
The try block lets you test a block of code for errors.

The except block lets you handle the error.

The finally block lets you execute code, regardless of the result of the

try- and except blocks.

When an error occurs, or exception as we call it, Python will normally
stop and generate an error message.

These exceptions can be handled using the try statement:

The try block will generate an exception, because x is not defined:

try:

 print(x)

except:

 print("An exception occurred")

Output: An exception occurred

Since the try block raises an error, the except block will be executed.

Without the try block, the program will crash and raise an error:

This statement will raise an error, because x is not defined:

print(x)

Output: NameError: name 'x' is not defined

You can define as many exception blocks as you want, e.g. if you want

to execute a special block of code for a special kind of error:

Print one message if the try block raises a NameError and another for other errors:

try:

 print(x)

except NameError:

 print("Variable x is not defined")

except:

 print("Something else went wrong")

Output: Variable x is not defined

You can use the else keyword to define a block of code to be executed

if no errors were raised:

In this example, the try block does not generate any error:

try:

 print("Hello")

except:

 print("Something went wrong")

else:

 print("Nothing went wrong")

Output:

Hello

Nothing went wrong

The finally block, if specified, will be executed regardless if
the try block raises an error or not.

try:

 print(x)

except:

 print("Something went wrong")

finally:

 print("The 'try except' is finished")

Output:

Something went wrong

The 'try except' is finished

This can be useful to close objects and clean up resources:

Try to open and write to a file that is not writable:

try:

 f = open("demofile.txt")

 f.write("Lorum Ipsum")

except:

 print("Something went wrong when writing to the file")

finally:

 f.close()

The program can continue, without leaving the file object open.

Output: Something went wrong when writing to the file

