
A lambda function is a small anonymous function.

A lambda function can take any number of arguments, but can only
have one expression.

lambda arguments : expression

The expression is executed and the result is returned:

A lambda function that adds 10 to the number passed in as an

argument, and print the result:

x = lambda a : a + 10
print(x(5))

Output: 15

Lambda functions can take any number of arguments:

A lambda function that multiplies argument a with argument b and

print the result:

x = lambda a, b : a * b
print(x(5, 6))

Output: 30

A lambda function that sums argument a, b, and c and
print the result:

x = lambda a, b, c : a + b + c
print(x(5, 6, 2))

Output: 13

The power of lambda is better shown when you use them as an
anonymous function inside another function.

Say you have a function definition that takes one argument, and that
argument will be multiplied with an unknown number:

def myfunc(n):
 return lambda a : a * n

Use that function definition to make a function that always doubles the

number you send in:

def myfunc(n):
 return lambda a : a * n

mydoubler = myfunc(2)

print(mydoubler(11))

Output: 22

Or, use the same function definition to make a function that

always triples the number you send in:

def myfunc(n):
 return lambda a : a * n

mytripler = myfunc(3)

print(mytripler(11))

Output: 33

Or, use the same function definition to make both functions, in the
same program:

def myfunc(n):
 return lambda a : a * n

mydoubler = myfunc(2)
mytripler = myfunc(3)

print(mydoubler(11))
print(mytripler(11))

Output:
22
33

Note: Use lambda functions when an anonymous function
is required for a short period of time.

