Algorithmic Efficiency

What it is ?

Simplified Analysis of an Algorithm"s Efficiciency

1. Complexity in terms of input size, \mathbf{N}

2. Machine Configuration
3. Logics used in algorithm
4. Time and Space (Memory)

Types of Measurement........

Worst - Case

Average - Case

Best - Case

General Rules

1. Ignore Constant
 $2(n) \Longrightarrow O(n)$

2. Ignore Non- dominant terms

$O(1) \ll(\log n)<O(n)<O(n \log n)<O\left(n^{2}\right)<O\left(2^{n}\right)<O(n!)$

Big-O Notation Complexity Chart

Constant Time：Complexity

$$
\begin{gathered}
K=2 ヶ(10 \% 25) \\
\text { Independent of qnout Sire (NN)。 }
\end{gathered}
$$

Constant Values may be ignore and Mence Final time taken will be o（1t）

Constant Time: Complexity

$$
\begin{array}{ll}
X=2+(10 * 25) & \Rightarrow O(1) \\
Y=15-3 & \Rightarrow O(1) \\
\text { Print }(X+Y) & =O(1)
\end{array}
$$

Total Time taken:
$O(1)+O(1)+O(1)=3^{*} O(1)$
Determine the Bigger (Dominant) term that is O(1)
Result = O(1)

Linear time: Complexity of loop for k in range ($0, \mathrm{n}$):
 Loop executes "N" times print $(k) \longrightarrow 0(1)$

Total Time taken:
$N^{*} O(1)=O(N)$
N is bigger (dominant) term than $\mathrm{O}(\mathbf{1})$
So,
Result = O(N)

Other Example of Loop

$$
\begin{aligned}
& y=5+\left(15^{*} 20\right) ; \\
& \text { for } \times \text { in range }(0, n):\} \\
& \quad \begin{array}{l}
\text { print } x ;
\end{array}
\end{aligned}
$$

total time $=O(1)+O(N)=O(N)$
Total Time taken:
$\mathrm{O}(1)+\mathrm{O}(\mathrm{N})=\mathrm{O}(\mathrm{N})$
for loop term $\mathbf{O}(N)$ always dominant other terms
So,
Result = O(N)

Quadratic time: Nested loop

$$
\begin{aligned}
& \text { for } \mathrm{X} \text { in range }(\mathrm{n}): \quad \text { Outer Loop Runs }-N \text { Times } \\
& \text { for } \mathrm{Y} \text { in range }(\mathrm{n}): \text { Inner Loop Runs }-N \text { Times } \\
& \operatorname{print}(X * Y) O(1) \text { times }
\end{aligned}
$$

Total Time taken:
N * $\mathrm{N}^{*} \mathrm{O}(1)=\mathrm{O}\left(\mathrm{N}^{2}\right)$
Nested loop N^{2} is bigger (dominant) than $\mathrm{O}(1)$
So,
Result $=\mathrm{O}\left(\mathrm{N}^{2}\right)$

$\mathbf{O}\left(\mathbf{N}^{2}\right)$

$$
\left.\begin{array}{ll}
\begin{array}{l}
x=5+\left(15^{*} 20\right) ;
\end{array} & O(1) \\
\text { for } x \text { in range }(0, n): \\
\quad \text { print } x ;
\end{array}\right\} \quad O(N)
$$

Total Time taken:
$\mathrm{O}\left(\mathrm{N}^{2}\right)+\mathrm{O}(\mathrm{N})+\mathrm{O}(\mathbf{1})=\mathrm{O}\left(\mathrm{N}^{2}\right)$
Nested loop O(N2) is bigger (dominant) than O(N) and O(1) So,
Result $=\mathbf{O}\left(\mathrm{N}^{2}\right)$

Calculate Complexity of if-else

To computer the complexity of if-else statement, we consider the worst case running time. Which mean we consider the total time as given below
Time taken by test + time taken by either of block or else part. (Whichever is larger)

Example:

if $(A>B)$:
return False
else:
for I in range(n): if $(A<B)$: return False
\# takes time as constant Co \# takes time as constant C1
\# for loop runs n times \# takes time as constant C2 \# takes time as constant C3

Time taken by else part =

Total time Taken: $\mathbf{C O}+\mathbf{C 1}+(\mathbf{C 2}+\mathbf{C 3})^{*} n \quad$ that is $\mathrm{O}(\mathrm{N})$
loop N is bigger (dominant) term than other terms in this example. So, Result will be: $O(N)$ (ignore the Constants)

