mic Efficiency

, Algorithm

Whatitis ?

Simplified Analysis of an Algorithm’s Efficiency

1. Complexity in terms of input size, N
2. Machine Configuration
3. Logics used in algorithm

4. Time and Space (Memory)

Types of Measurement........

Worst - Case
Average - Case

Best - Case

General Rules ..
1. Ignore Constant
2 (n) == O(n)
2. Ignore Non- dominant terms

0(1) < O(logn) < O(n) < O(nlogn) < O(n?) < O(2") < O(n!)

Big-O Notation Complexity Chart

Horrible| |Bad| Fair||Good| |[Excellent|

O(nA2)

by |oeAn)

7))
A
S
‘—
S
1
®

O(n)

O(log n), O(1)

https://www.youtube.com/channel/UClForwqJCnpYep8beLAv8qw?view_as=subscriber
https://www.youtube.com/channel/UClForwqJCnpYep8beLAv8qw?view_as=subscriber

Constant Time: Complexity

Xe2+(10*25)

Incependent of Input Size (N).

Comnstant Ve

Henece [Final

lu

s

o0

@S may be ig
me taken wi

NOre anel

I be O(L)3

Constant Time: Complexity

X=2+(10*25) =>0(1)
Y=15-3 => 0(1)
Print (X+Y) => 0(1)

Total Time taken:

0O(1) + O(1) + O(1) =3* 0(1)

Determine the Bigger (Dominant) term that is
0(1)

Result = 0(1)

Linear time: Complexity of loop

for k in range (0,n): memp °°P Srecutes
print (k) ms) 0(1)

Total Time taken:

N * O(1) = O(N)

N is bigger (dominant) term than O(1)
So,

Result = O(N)

Other Example of Loop

y =5 + (15 * 20);
for x in range (O, n):
} O(N)

print x;

total time = O(1) + O(N) = O(N)

Total Time taken:

0(1) + O(N) = O(N)

for loop term O(N) always dominant other terms
So,

Result = O(N)

Quadratic time: Nested loop

Total Time taken:

N*N*0(1) = O(N?)

Nested loop N? is bigger (dominant) than O(1)
So,

Result = O(N?)

O(N?)

x =5 + (15 * 20); O(1)
for x in range (O, n):

print x; } O(N)

for x in range (O, n):
for y in range (O, n): } O(N?2)
b 3

print x Y

Total Time taken:

O(N2) + O(N) + O(1) = O(N?)

Nested loop O(N?) is bigger (dominant) than O(N)
and O(1) So,

Result = O(N?)

To computer the complexity of if-else statement, we consider the worst case
running time. Which mean we consider the total time as given below

Time taken by test + time taken by either of block or else part JUTRICIEERIEIEEY

Example:
if (A>B): # takes time as constant Co

return False # takes time as constant C1
else:
for 1 in range(n): # for loop runs n times
if(A<B): # takes time as constant C2

return False # takes time as constant C3

Total time Taken: CO+C1 +(C2+C3) *n that is O(N

loop N is bigger (dominant) term than other terms in this example.
k So, Result will be: O(N) (ignore the Constants)

