
 Data Structure is collection values of different

datatypes and stored in a single unit. A data structure has well defined
operations, behaviors and properties. It is used to store, access and

manipulate data in different ways. (Python inbuilt structures: list, tuple,
dictionary, set)

Data Structure combines various data values in single unit, but allow
various processing on group as single unit. Data structure is classified in

two ways:

1. Simple Data Structure: These type of data structure stored the

primitive data type values like integer, float, character and Boolean.

Example: and Linear List

(i). Numpy Array (ii). Linear Lists

2. Compound Data Structure: Compound data structure is formed by

collection of simple data structure in various ways. There are two

categories of compound data structure.

(A) Linear Data Structure: It is a single level data structure that

store the elements in a sequence.

Example:

 (i) Stack (ii) Queue (iii) Linked List

(B) Non-Linear Data Structure: These are Multi level data structure

and data stored in multiple levels and linked together.

Example: Tree

Following are the basic operations which can performed on

data structures.

1. Insertion: Addition of new data element in data structure.

2. Deletion: Remove of data element from data structure.

3. Searching: Searching of specific element from structure.

4. Traversal: Processing all data element one by one.

5. Sorting: Arranging data element of structure either in

ascending or descending order.

6. Merging: Combining data elements of two similar type of
sorted structures and form the new data structure.

Linear list or array is a collection of homogeneous data

elements. Elements are assembled in array in form of index.

Insertion and deletion can take place at any location in the

array.

Array can be implemented using numpy array in python.

Ex. L=[2,4,6,7] Elements : 2,4,6,7 Index: 0,1,2,3

Array can be 1-D, 2-D or Multi- dimensional

Stack structure stores the list elements in such a way that LIFO (Last

In First Out) technique followed. In stack the Insertion and Deletion

operation take place at one end that is called top.

0 2 1 4 2 6 3 7

Queue data structure is works on FIFO (First In First Out)

technique. In Queue the Insertion of element take place at

“rear” end where Deletion at “front” end.

Linked list is special type of data structure in which elements linked to one another.

Logically the first element pointing to second element and so on.

Each element is called node that has two parts.

(A) Data / Info : it store the data / element value.

(B) Pointer / Next: it makes a reference that store reference of next node.

The first node is called the head, and it’s used as the starting point for any

iteration through the list. The last node must have its next reference

pointing to None to determine the end of the list. Here’s how it looks:

Tree is Multi Level data structure. It has hierarchical relationship among

the nodes (elements). Each of node has its reference pointer that points

to the node below it.

Stack Data Structure
Stack is linear structure implemented in LIFO (Last in First Out)

manner where insertions and deletions are take place at one

end- TOP. It follow the following operations..

1. POP Operation: Data can only be removed from top. That

mean element at top will remove and this is called POP

operation.

2. PUSH Operation: A new data element can only be added at

the top of the stack and this is called PUSH operation.

3. Peek / Inspection: To inspect the element at the top of

stack without removing it is referred as Peek.

4. Overflow: In the static Stack, when it is already full then

we can’t increase the size of stack. When user tries to

PUSH new element in already full stack then an error

occurred and this situation known as stack overflow.

5. Underflow: It is situation when one tries to POP element

from an empty stack.

For Program of Stack, Visit the blog.

https://ictswami.wordpress.com/python-projects/

https://ictswami.wordpress.com/python-projects/

Application of Stack

In Python there are three types of notations of expression.
1. Infix notation 2. Postfix notation 3. Prefix notation

Infix Notation Prefix Notation Postfix Notation

A+B +AB AB+

(A-C)*B *-ACB AC-B*

A+(B*C) +A*BC ABC*+

There are two Stack Application used in Python.

1. Infix to postfix Conversion using Stack

2. Evaluation of Expression using Stack

1. Infix to postfix Conversion using Stack

To convert infix to postfix notation by using stack, there are some priority

rules for evaluation. These rules are

(i) Bracket or Parenthesis (ii) Exponentiation

(iii) Multiplication or Division (iv) Addition or Subtraction

General Rules:

1. If input is operand/ Variable then shift in output.

2. If input is operator then must be PUSH in stack as per following cases.

(i) If Stack operators having equal or higher priority than input

operator, in this case first POP all Equal and Higher priority

operators from stack one by one and after it PUSH input

operator in stack.

(ii) Other than above case mentioned in part (i), the input operator

will directly PUSH in stack.

3. (or { or [will be remove only with their respective) or } or]

4. At last POP all operators one by one from stack and shift in output.

5. Stack position at the end of conversion should be Empty.

Example: Convert (A+B)* C/D into postfix notation.

Step Input Action Stack
Position

Output

1 (PUSH in Stack (----------

2 A Shift to Output (A

3 + PUSH in Stack (+ A
4 B Shift to Output (+ AB

5) POP +
Remove (

Empty AB+

6 * PUSH in stack * AB+

7 C Shift to Output * AB+C

8 / POP *
PUSH / in Stack

/ AB+C*

9 D Shift to Output / AB+C*D

10 --------- POP all Operators
from Stack

Empty AB+C*D/

2. Evaluation of Expression using Stack

Rules for evaluation:

1. If input is operand (Value/True/False) then the operand will PUSH in

stack.

2. If input is Unary operator then POP one value from stack to evaluate

with operator and PUSH the result in stack.

3. If input is Binary operator then POP Two values from stack to

evaluate with operator and PUSH the result in stack.

4. Intermediate Evaluation should be as…

Result= (Second POP Value) Operator (First POP Value)

5. At the end of evaluation, POP all Values from stack one by one to

find final result. Make sure that stack should empty.

Example-1: Evaluate the expression 5 6 2 + * 12 4 / - by using stack.

Step Input Action Stack
Position

Intermediate
Output

1 5 PUSH in Stack 5 ---------
2 6 PUSH in Stack 5, 6 ---------

3 2 PUSH in Stack 5, 6, 2 ---------
4 + POP 2 elements and

PUSH(6+2=8)
5, 8 6+2=8

5 * POP 2 elements and
PUSH(8*5=40)

40 8*5=40

6 12 PUSH in Stack 40, 12

7 4 PUSH in Stack 40, 12, 4

8 / POP 2 elements and
PUSH(12/4=3)

40, 3 12/4=3

9 - POP 2 elements and
PUSH(40-3=37)

37 40-3=37

10 ------ POP All elements Empty 37 (Result)

Example-2: Evaluate the expression by using stack.

True, False, True, NOT, False, True, OR, NOT, AND, OR, AND

Step Input Action Stack Position Intermediate Output

1 True PUSH in Stack True, ---------

2 False PUSH in Stack True,False ---------

3 True PUSH in Stack True,False,True ---------

4 NOT POP 1 elements and PUSH
NOT(True)=False

True,False,False

NOT(True)=False

5 False PUSH in Stack True,False,False,False ---------

6 True PUSH in Stack True,False,False,False,True ---------

7 OR POP 2 elements and PUSH
False OR True=True

True,False,False,True

False OR True=True

8 NOT POP 1 elements and PUSH
NOT(True)=False

True,False,False,False

NOT(True)=False

9 AND POP 2 elements and PUSH
False AND False=False

True,False,False

False AND False=False

10 OR POP 2 elements and PUSH
False OR False=False

True,False

False OR False=False

11 AND POP 2 elements and PUSH
True AND False=False

False

True AND False=False

12 ------ POP All from Stack Empty False (Result)

Queue Data Structure
Similar to stack, the queue is also consist of sequence of elements in

linear list. The queue works on FIFO (First In First Out) Mechanism. The

queue structure has two ends.

Front end: This is the end where the Deletion operation of queue take

place. That mean the element will delete at the front end of queue.

Removal of element from queue is called DEQUEUE operation

Rear end: This is the end where the Insertion operation of queue take

place. That mean the new element will insert at the rear end of queue.

Insertion of element into queue is called ENQUEUE operation

1. Peek / Inspection: To inspect the element at front of queue

without removing it is referred as Peek.

2. Overflow: In the static Queue, when it is already full then

we can’t increase the size of Queue. When user tries to

ENQUEUE new element in already full Queue then an error

occurred and this situation known as Queue overflow.

3. Underflow: It is situation when one tries to DEQUEUE an

element from an empty Queue.

 For Program of Stack, Visit the blog.

https://ictswami.wordpress.com/python-projects/

https://ictswami.wordpress.com/python-projects/

