
 An Algorithm is a method or procedure for

accomplishing a specific task. In other words the algorithm is a systematic
collection of steps which used to solve any problem and these steps can

be implement in programming language-Python. The algorithm should be
efficient and effective in nature.

The quality or performance of an algorithm is depends on many internal
and external factors.

1. Internal factors: These factors specify the efficiency of algorithm in
terms of….

 Time required to run

 Space (Memory) required to run

These internal factors are studied and measured in order to determine
the efficiency or complexity of algorithm.

2. External factors: These factors affect the performance of algorithm.

It includes following factors…

 Size of input to algorithm

 Speed of computer

 Quality of Compiler

The external factors are controllable to some extent.

Computation involves the “problem to solve” and “algorithm to
solve that problem”. Where complexity involves the study of
factors to determine, how much resource is sufficient for
performance of used algorithm to solve the problem?

Depending on the resources there are two types of complexity

1. Temporal Complexity (Time needed to run algorithm.)

2. Space Complexity (Memory/Storage needed to run

algorithm)

Effectiveness mean that the algorithm carried out its desired

output correctly.

Efficiency mean that the algorithm should be correct with the

best possible performance for all types of inputs.

To every algorithm there may be three cases for producing output or its performance.

A. Worst–Case

B. Average-Case

C. Best-Case

Big-O Notation is simplified analysis of an algorithm’s efficiency. It depicts the growth

rate of an algorithm. The growth rate determine the performance of algorithm when

its input size grow. Big –O notation is very useful in comparing the performance of two

or more algorithm. Complexity estimate in terms of following factors.

A. In term of Input size, N

B. Machine – Independent (Machine configuration)

C. Basic Computer Steps (Logic used in algorithm)

D. Time and space

Calculate Complexity for Loops:

Running time of a loop is approximately equal to the “Running

time of body statements of loop multiplied by number of

iteration”

Example:

 for I in range(n):

 sum=sum+I

So total time taken by the execution of loop is:

Total Time= C * n = Cn i.e. O(n)

Where..

C is time taken for one iteration.

n is total number of iterations.

Cn / O(n) is total time taken for all iterations.

Loop executes n times.

All statements in

this loop takes

constant time. It is C

Calculate Complexity for nested Loops:

Explanation:

for X in range (n):

 for Y in range(n):

 print(X * Y)

So total time taken by the execution of nested loop is:

Total Time= C * n * n = Cn2 i.e. O(n2)

Where..

C is time taken for one iteration.

n2 is total number of iterations(both for inner & outer loop).

Cn2 / O(n2) is total time taken for nested loop.

Outer Loop executes n times.

Inner Loop executes n times.

All statements in this loop

takes constant time. It is C

Explanation:

Total Time = O(1) + O(N) + O(N2)

That Mean Total Time = O(N2)

{Note: - Considering only dominant term, i.e. N2}

Calculate Complexity for if-else:

To computer the complexity of if-else statement, we consider the

worst case running time. Which mean we consider the total time

as given below

Time taken by test + time taken by either of block or else part.

(Whichever is larger)

Example:

if (A>B): # takes time as constant Co

return False # takes time as constant C1

else:

 for I in range(n): # for loop runs n times

 if(A<B): # takes time as constant C2

 return False # takes time as constant C3

Total time Taken: C0 + C1 + (C2 + C3) * n that is O(N)

 Constants matters in performance of algorithm.

 Be cognizant of best case or average case.

Time taken

by else part =

(c2+ c3) * n

