3.1

INTRODUCTION 2 £
lLarge programs enerally avoided because it is difficult to_manage a m:ﬁs‘ QA‘
: prr ons mar:lagrge program is broken down into sm.ller @s kn?.m as fmm \
funcﬁonisa' name’d unit of a group of program statements.'l‘lusumtmbe_mmked from other
parts of the program. e o
most importan ; gram handling
1 t reason to use functions is to pre andli
T:i of the program :dealt with at a time, t{\emby avoxdmg a_mb
functions is to reduce program size: Functions make a program
standable to a programmer thereby making program management
in this chapter, we shall talk about functions, especially,
) wm;mywmmbywm,__
| hor ;mdinwyoucmuu‘thcfun__

Scanned with CamScanner

- 94 i

COMPUTER SCIENCE Wik
Py

HQ),
3.2 UNDERSTANDING FUNCTIONS s

In order to understand what a function is, in terms of a Programming lang
Uag
fe

following lines carefully. € Teyg b
You have worked with polynomials in Mathematics. Say we have following poly
Nom;
22 mla|:
For x =1, it will give resultas 2x1* =2
For x =2, it will give result as 2x 2% =8
For x =3, it will give result as 2x 32=18
and so on.
Now, if we represent above polynomial as somewhat like
£ = 2¢°
Then we can say (from above calculations) that
f@)=2 (1)
f(2)=8 -(2)
f(3)=18 -0

The notation f(x) =2x? can be termed as a function, where for function namely f, xis s

argument i.e., value given to it, and 2x% is its functionality, i.e., the functioning it performs, For
different values of argument x, function f(x)will return different results (refer to equations (I}

(2) and (3) given above).

¥ On the similar lines, programming languages also support functions. You can create functios
in a program, that :

¢ can have arguments (values given to it), if needed
© can perform certain functionality (some set of statements)

¢ can return a result

~ For instance, above mentioned mathematical function f(x) can be written in Python like this

def calcSomething (x) :
IR H D
return r

s a function definition is starting
’ Vi am
: '“ﬁollowmg def” is the name of the function, i.e., here the function I

Juet
; ‘e A ‘ valt
s/identifiers m51de the parentheses are the arguments or parmneft’f‘(

on), i.e., here x is the argument to function calcSomething.
vlon at the end of def line, meaning it requires a block

Scanned with CamScanher

WORKING WITH FUNCTIONS 95 .

O tl\e S.t“h‘ll.‘ct‘ts l‘nl{?‘ntt‘(i 'bt“ﬂ\\' tl](‘ '1111(‘('“')"’ (i.l'., l‘l()ck l’l\]()w d(:f llne) dt»ﬁnc ll]c
functionality (working) of the function. This block is also called body-of-the-function.
Here, there are two statements in the body of function calcSomething.

& The return statement returns the computed result

To see
s : atl e TN . Function anatormy
The non-mdel?ttd statements that are below the function definition in action
are not part of the function calcSomething’s definition. For instance, IoE= 0l
consider the example-function given in Fig. 3.1 below : gﬂﬁﬂg\'
A9
| [m]74i

name of the function argument to the function Scan

/ QR Code

definition of function calcSomething

def calcSomething (x) : /]
r=2 * X * % 2
Body of the function caleSomething

/ returnr

Statement to

retum computed

result m Complete program

a = int(input("Enter a number :"))

) . &—— This is not a part of function calcSomething.
print (calcSomething(a)) (These statements are not indented and hence ’
at top level of indentation.) 1

|
‘
r

Function call inside print() : A
Figure 3.1 Python Function Anatomy

3.2.1 Calling/Invoking/Using a Function
To use a function that has been defined earlier, you need to write a function call statement in
Python. A function call statement takes the following form :

<function—name>(<value-to-be-passed-to—argument>)
For example, if we want to call the function calcSomething() defined above, our function call

statement will be like :
calcSomething(5) #value 5 is being sent as argument

Another function call for the same function, could be like :

a=7

calcSomething(a) # this time variable a is being sent as argument
Carefully notice that number of values being passed is same as number of parameters.

Also notice, in Fig. 3.1, the last line of the program uses a function call
To see

Consider one more function definition given below :

def cube(x) :
res = x ¥* 3 # cube of value in x

return res # return the computed value

“ Ii-.‘

Scanned with CamScanner

o k.

AS you .Can make out that the above function’s name is ¢
Its function cal statement(s) would be similar to the ones

(i) Passing literal as argument in function call
Cube(4) # it would pass value as 4 to argument x

ube() and i ()
e
shown beloy, : S0

(1) Passing variable as argument in function call
num= 10

cube (num) # it would pass value as variable num to argument 4
(i) taking input and passing the input as argument in function cal|

mynum = int (input ("Enter a number :"))
cube (mynum) # it would pass value as variable mynum to argument yx

(iv) using function call inside another statement
print(cube(3)) #cube(3)will first get the computed result m
which will be then printed The syntax of the f,
Netge

. . - . 1 " ' - '
(v) using function call inside expression e g
the declaration, EXCEpt tha
double OfCube = 2 * cube(6) the key word def and colgn
function call’s result will be multiplied with 2 i 17

3.2.2 Python Function Types

Python comes preloaded with many function-definitions that you can use as per your needs. You
can even create new functions. Broadly, Python functions can belong to one of the following
three categories :

1. Built-in functions These are pre-defined functions and are always available for use. You hav
used some of them — len(), type(), int(), input() etc.

2. Functions These functions are pre-defined in particular modules and can only te

defined in used when the corresponding module is imported. For example, if you wai
~ modules to use pre-defined functions inside a module, say sin(), you need to fr
) import the module math (that contains definition of sin()) in your program

Jser defined These are defined by the programmer. As programmers you can crei
your own functions.

- @
In this chapter, you will learn to write your own Python functions and s
them in your programs.

Progress In Python a4

is aimed at making anatomy of Python functions clear to you.
to practice about structure of Functions.

ck the practical component-book - Progress in ComPU“1er
with Python and fill it there in PriP 3.1 under Chapter 3 arfer
practically doing it on the computer.

bS5 LLd

Scanned with CamScanner

| _gicici S

.3 DEFINING FUNCTIONS IN PYTHON

As you know that we write programs to do certain things. Functions can be thought of as
key-doers within a program. A function once defined can be invoked as many times as needed
by using its name, without having to rewrite its code.

In the following lines, we are about to give the general form i.e., syntax of writing function code
in Python. Before we do that, just remember these things.
In a syntax language :

® item(s) inside angle brackets <> has to be provided by the programmer.

® item(s) inside square brackets [] is optional, i.e., can be omitted.

® items/words/punctuators outside <> and [] have to be written as specified.

A function in Python is defined as per following general format :

def <function name> ([parameters]) :
["""<function's docstring>" " "]

<statement>
[<statement>]

For example, consider some function definitions given below:

def sum (x, y) :
S=X+Yy
return s
Or
def greet():
print("Good Morning!")
Though you know about various elements in a function-definition, still let us talk about it again.
Let us dissect these functions’ definitions to know about various components.

Parameters inside() T Parameters inside():
unction name o argument here

Keyword def Function name are x, y Komiord st 1&

def greet (') :
\ Function Header / :
(ends with a colon :)

i !\ Funetion Body (indented)

(See all statements in function body
are at same level of indentation.)

Function may or may not have a return statement

s formally :

of function definition that begins with ﬂteywml'* a
‘the name of the function and its parameters

Scanned with CamScanner

N

COMPUTER SCIENCE WITH PYTHc
ON

.

Paramet :
ers Variables that are listed within the parentheses of a function header

Fune -
tion B°d)' The block of statements / indented-statements beneath function header th

action performed by the function. At defing thy
The function body may or may not return any value. A function retyrm.
a refurn statement, e.g., above given sum() is returning a value stored i
function greet() is not returning a value.

A function not returning any value can still have a return state
expression or value. Examples below will make it clearer.

a valye throy
N variah Bh
adles, 1,

Ment withgy,

Indentation The blank space in the beginning of a statement (convention is four s

: ; Paces) v
block. All statements within same block have same indentation. Within ,

Let us now have a look at some more function definitions.

Sample Code 1

def sumOf3Multiplesi(n) :
s=n*1+n*2+n*3
returns

Both these functions are doing the same thing BUT
first one is returning the computed value using

\
return statement and
second function is printing the computed value
Sample Code 2 / using print() statement
def sumOf3Multiples2(n) :

s=n*1+n*2+n*3

print(s)

Consider some more function definitions:

Sample Code 3 # Sample Code 4
def areaOfSquare (a) : def areaOfRectangle (a, b) :
returna * a returna *b

Sample Code 5
def perimeterCircle(r) :
return (2 * 3.1459 * r)

Sample Code 6
def perimeterRectangle(1,b):
return2* (1+b)

Sample Code 7

def Quote() :
print("\t Quote of the Day")
print("Act Without Expectation!!")

print("\t -Lao Tzu")

i

et 40
exercise, Ut

all these function definitions, try identifying their parts. (Not as an
ually, while reading them.) o does™
tion definition defines a user-defined object function. The function d"f'r.“t\l,l;ked. 1“thi‘
anction body; this gets executed only when the function is called of Ln efol®
es, we are discussing how to invoke functions, but before that it wo
structure of a Python program.

Scanned with CamScanner

e

Chapter b WORKING WITH FUNCTIONS

3.3.1 Structure of a Python Program

In a Python program, generally all function definitions are given at the top followed by
statements which are not part of any functions. These statements are not indented at all. These
are often called from the top-level statements (the ones with no indentation). The Python
interpreter starts the execution of a program/script from the
top-level statements. The top level statements are part of the
main program. Internally Python gives a special name to
top-level statements as __main_.

The structure of a Python program is generally like the one
shown below :

def functionl() :
def function2() :

def function3() :

Python names the segment with top-level
statements (no identation) as __main__.
Python begins execution of a program from
the top-level statements i.e., from

top-level statements here e

Iy J— —
statementl h

I
statement2 h /

Python stores this name in a built-in variable called __name__ (i.e., you need not declare this
variable ; you can directly use it). You can see it yourself. In the __main__ segment of your

program if you give a statement like :

print(__name__)

Python will show you this name. For example, run the following code and see it yourself.

The top-level statements, i.e., the _main__
def greet() : segment of this Python program. Python will start
pr'int("Hi there!") execution of this program from the segment.

print (At the top-most level right now")] @

print("Inside” , _ name__)

Upon executing above program, Python will display :

At the top-most level right now

Inside _main__
Notice word ' _main_ " in the output by Python
™ interpreter. This is the result of statement :

prini(..., __name__)

A

Scanned with CamScéhnér

4

—

COmp
Paramet i UTR s
ers Variables that are listed within the ENCE Wity o
Function B Parentheses of : N
ody Th? block of statements / Indented-st °f a functiop, heaq
action performed by the pace atements beneath e r
The function body may Or may not ON headg, that 4
a return statement ¢ o return any y, ey
functi .+ €8~ above given sum() oo A function -
nction greet() is not returning a ya] IS returning , valy Msa aly
A o ctio _ g alue, € storeq e thh;.\.,_
N not ret‘ummg any valye ’ \anabk\f
expression or value. E : can still have , v
alue. Examples below will make it clea TEkurm Statemen, Wi
- r 4
Indentation The blank space in the beginning of a stat I e
block. All statements with: ement (conventigy, ; f
within same bjock have same in, dEntanons T Spages) Wit
Let us now have a look at Some more function definitions
Sample Code 1
def sumOf3Multiplesi(n) :
S=n*1l+n* o
1 2+4n*3 \ Both these functions are doing the same thing BUT
return s first one is returning the computed value using
return statement and
second function is printing the computed value
Sample Code 2 / using print() statement
def sumOf3Multiples2(n) :
s=n*¥1+n*2+n*3
print(s)
Consider some more function definitions:
Sample Code 4
e3 :
g ipie cod 3 def area0OfRectangle (3, b):
def areaOfSquare (a) : returna*b
returna * a
Sample Code 6 b):
Sample Code 5 def perimeterRectangle(1,b):
erimeterCircle(r) : return2* (1+0)
. return (2*3.1459 % r)
Code 7
u\t Quote O‘F the Day-|) - | '“)
‘mAct Without Expectation:: "
" 4 u’
-Lao Tzu") Not a5 & exercise: |
. try identifying their parts: { jon 4 2
jon definitions, try n de hoked ¥
ng them.) ion. The rinve '
E . ed object functio™ " . called ldb‘*"fh‘
defines a user-defined ©) hen ction jt wou
. ecuted only whe pefore
5 this gets ex invoke functionst
cussing how to " 7
of a Python progr

Scanned with CamScanner

-

COMPUTER SCIENCE 7y
(THC'

100

L

34 FlQ
W OF EXECUTION IN'A FUNCTION CALL

Let Uusi t
- > now alk dh()“t il ﬂ f
5) ln

function
e e (:l:l.nYa:)l:l a]fready know that a function is called (or invoked, or executed) cas«f,,;
invoke a f A ollowed by the values being sent enclosed in parentheses For Vi,
unction whose header looks like : " Nstang, ri‘
def sum (x, y) : &
the funetion call Statement may look like as shown below :
sum (a, b)

where 4, b are the values being passed to the function sum/().

Let us now see what happens when Python interpreter
The Flow of Execution

encounters a function call statement. o

;) . the order in wh ¥l

The Flow of Execution refers to the order in which statements e racited \;'h'Fh Statemep,
3 uring a

are executed during a program run. run. ® 2 Progan

—

Recall that a block is a piece of Python program text that is
executed as a unit (denoted by line indentation). A function
body is also a block. In Python, a block is executed in an

execution frame. The Flow of Execution refers 1

An execution frame contains : the order in which statemens
are executed during a progray

& some internal information (used for debugging) o
& name of the function

& values passed to function

& variables created within function

& information about the next instruction to be executed.

Whenever a function call statement is encountered, an execution frame for the called functionis
created and the control (program control) is transferred to it. Within the function’s executio
frame, the statements in the function-body are executed, and with the refurn statementor the las
statement of function body, the control returns to the statement wherefrom the function was

called, i.e., as :

def func() :
return
i Last statement of the function
i definition will send the con
: back to wherefrom the
tion was called.
'Func() func
print(..)
z ing
4 ki ! . he follo"
w see how all this is done with the help of an example. Consider t
ode.
Yy

Scanned with CamScanner

oter 3 WORKING WITH FUNCTIONS 101
T 3
3.1 Program to add two numbers through a function w,,,y.nqn,,:'(;om,.,_h,,,,
In action
k- # program add. py to add two numbers through a function =
ra
rog def calcSum (x, y) : %
S=X+y # statement 1)Elrxﬁ
return s # statement 2 . :
can
QR Code

#1 (statement 1)
2 (statement 2)
3 (statement 3)
4 (statement 4)

numl = float (input("Enter first number :"))
num2 = float (input("Enter second number :"))
sum = calcSum(numl, num2)

print ("Sum of two given numbers is", sum)

Program execution begins with first statement of __main__
segment. (def statements are also read but ignored until

called. It will become clear to you in a few moments. Just read Program execution begins with

on.) first statement of __main__
5 ; : segment.

(Please note that in the following lines, we have put up some

execution frames for understanding purposes only; these are

not based on any standard diagram.)

Number indicating next

statement to be executed \

__main__ (add.py) ” 2 Python Console

Enter first number : 3

numl = float(input(“Enter first number :")) — -

num2 = float(input("Enter second number :")) : TEINE - il
It tells the currently et

sum = calcSum (numl, num2) Se sy T
execuling statement "

o’
ot
.
A
(e
.

Statement | executed —
on console

print("Sum of two given numbers is", sum)

.
-
-
(L

Data :
numl = 3.0 =+ enunana RN TAREAraY B s musareXas iy

This is datapart of __main_

{ 3 ‘ Python Console

__main__ (add.py)

Enter first number :
fuml = float (input("Enter first number :")) ! S

N2 = float(input("Enter second number :"))-- @ Enter second number : 7

sum = calcSum (numl, numz) I 7.'.‘:':,.-‘. {

Print("Sum of two given numbers is", sum) Bt - T

ET f _..-‘,..-""'. Statement 2 executed -
| guntit’ on console

n -
uml = 3,0 .
nUmZ = 7-0 "lonoanu-u---u-a“---unv"""" |

Scanned with CamScanner

N

COMPUTER SCIENCE vy
H pY

TH
3.5 PASSING PARAMETERS N .

Uptill now you learnt that a function call must provide all the valyes as r
definition. For instance, if a function header has tiree parameters ng med meqtulm
function call should also pass three values. Other than this, Python R pr](; heade, [‘(h(r
ways of sending and matching arguments and parameters. Vides g,

Python supports three types of formal arguments/parameters : o
1. Positional arguments (Required arguments) Function paggy,
2. Default arguments
3. Keyword (or named) arguments

Let us talk about these, one by one.

3.5.1 Positional/Required Arguments

Till now you have seen that when you create a function call statement for 4 given
definition, you need to match the number of arguments with number of parameters
For example, if a function definition header is like :

f“nfﬁor
€qUireg

def check (a, b, c) :

then possible function calls for this can be :

check (x, y, z) # 3 values (all variables) passed
check (2, x, y) # 3 values (literal + variables) passed

check (2, 5, 7) # 3 values (all literals) passed

See, in all the above function calls, the number of passed values (arguments) has matched with
the number of received values (parameters). Also, the values are given (or matched) positior-
m or order-wise, ie., the first parameter receives the value of first argument, second
eter, the value of second argument and so on e.g.,

In on call 1 above : In function call 2 above : In function call 3 above:
11 get value of x © a gets value of 2 ; & a gets value 25
will get value of y © b gets value of x ; & b gets value 3;

1 get value of z © c gets value of y © c gets value 7

h such function calls,

ments must be provided for all parameters (Required)

equired arguments or Mandatory
ddpped from the function call

|
Scanned with CamScanner

.

-

~

“hapher o WORKING WITH FUNCTIONS

352 Default Arguments
What if we already know the value for a certain parameter, e.g., in an interest calculating
function, we know that mostly the rate of interest is 10%, then there should be a provision to
define this value as the default value.

Python allows us to assign default value(s) to a function’s parameter(s) which is useful in case a
matching argument is not passed in the function call statement. The default values are
specified in the function header of function definition. Following is an example of function
header with default values :

def interest (principal, time, rate = 0.1‘03—:\

This is default value for parameter rate. If in a function call, the value for rate is
not provided, Python will fill the missing value (for rate only) with this value.

The default value is specified in a manner syntactically similar
to a variable initialization. The above function declaration
provides a default value of 0.10 to the parameter rate.

Now, if any function call appears as follows :

si_int = interest (54@0, 2) # third argument missing

then the value 5400 is passed to the parameter principal, the value 2 is passed to the second
parameter time and since the third argument rate is missing, its default value 0.10 is used for

rate. But if a function call provides all three arguments as shown below :

si_int = interest (6100, 3, 9.15) # no argument missing

then the parameter principal gets value 6100, time gets 3 and DEFAULT PARAMETER

the parameter rate gets value 0.15. A parameter having default
: : . value in the function header is

That means the default values (values assigned in function known as a default parameter.

nly if no value is provided for that

header) are considered o
parameter in the function call statement.

One very important thing you must know about default parameters 1Sk

In a function header, any parameter cannot have a default value unless all parameters appearing on

its right have their default values.

ation of function

For instance, in the above mentioned declar
have its default

interest(), the parameter principal cannot

value unless the parameters on its right, time and rate a.]so

have their default values. Gimilarly, the parameter tnfre

cannot have its default value unless the parameter 01-1‘1ts

ﬁ‘*f i.e., rate has its default value. There is no such condition
r rate as no parameter appears on its right.

Thus, required parameters should be before default parameters.

i d
Scanned with CamScanner

108 COMPUTER SCIENCE Wity py,
ON

I

: : : S t values :
Following are examples of function headers with default ve

; : # legal
def interest (prin, time, rate = 0.10) : / il?egal (defaut
5 : 5 3 au tpara
= (D] 4 Imi
def interest (prin, time = 2, rate) e FeqUiPedparQH,eiZi;
; #illegal
i in = ime = 2, rate) :
def interest (prin = 2000, time =2, / # (same reason as above)
. # legal
def interest (prin, time =2, rate = 0.10) : _ leea
def interest (prin = 200, time =2, rate =0.10) :
S eeR some
Default arguments are useful in situations v}vlhere e
parameters always have the same value. Also they p
greater flexibility to the programmers. The default valyes ¢
; re listed below : parameters are considereq
Some advantages of default parameters a l L if no value is provided for :::
& They can be used to add new parameters to the existing parameter in the functgn oy
functions. statement.

& They can be used to combine similar functions into one.

3.5.3 Keyword (Named) Arguments |
The default arguments give you flexibility to specify the d'efault value for a parameter so that it
can be skipped in the function call, if needed. However, still you cannot chmjge the order of the
arguments in the function call ; you have to remember the correct order of the arguments.

To have complete control and flexibility over the values sent as arguments for the
corresponding parameters, Python offers another type of arguments keyword arguments.

Python offers a way of writing function calls where you can write any argument in any orde
provided you name the arguments when calling the function, as shown below :

interest (prin = 2000, time =2, rate = 0. 10)
interest (time =4, prin = 2600, rate = 0.09)
interest (time =2, rate =0.12, prin = 2600)

All the above function calls are valid now, even if the order of arguments does not match the

order of parameters as defined in the function header.

In the 1st function call above,
prin gets value 2000, time gets value as 2 and rate as 0.10.

In the 2nd function call above,
|
. ~ prin gets value 2600, time gets value as 4 and rate as 0.09.

3rd function call above,
' gets value 2000, time gets value as 2 and rate as 0.12. | KEYWORD e

|
|

e
E Keyword argumen® a:sign |
: named arguments with s I
ng names for the values being passed, in the values being P3sse |

s known as keyword arguments. function call stafement/

| -

Scanned with CamScanner

3

Chopter 3 & WORKING ‘WITH FUNCTIONS 109

3.5.4 Using Multiple Argument Types Together

P_\'thmj al!ows. you to combine multiple argument types in a function call. Consider the
jollowing function call statement that is using both positional (required) and keyword arguments :

interest (5000, time =5)

The first argument value (5000) in above statement is representing a positional argument as it
will be assigned to first parameter on the basis of its position. The second argument (time =5) is
representing keyword argument or named argument. The above function call also skips an
argument (rate) for which a default value is defined in the function header.

Rules for combining all three types of arguments

Python states that in a function call statement :

& an argument list must first contain positional (required) arguments followed by any keyword

argument.
& Keyword arguments should be taken from the required

arguments preferably.
Having a positional arguments

& You cannot specify a value for an argument more than
once after keyword arguments will
: result into error.

For instance, consider the following function header :

def interest(prin, cc, time =2, rate =0.09) :

return prin * time * rate

ove function definition that values for parameters prin and cc can be provided

It is clear from ab
ord arguments but these values cannot be skipped

either as positional arguments or as keyw
from the function call.

Now for above function, consider following call statements :

) Legal / Reason
Function call statement illegal
TR (et

non-default values provided as named arguments

interest(prin = 3000, cc = 5) legal

interest(rate = ©.12, prin = 5000, cC = 4) | legal keyword arguments can be used in any order and
for the argument skipped, there is a default value

—

interest(cc = 4, rate = ©.12, prin = see0) | legal with keyword arguments, we can give values in

e any order

interest(5ee@, 3, rate = 0.05) legal positional arguments before keyword argument;

d for skipped argument there is a default value
\.--_
Mte = 09.05, 5000, 3) illegal keyword argument before positional arguments

 interest(5@0@, prin = 300, cC =2) illegal | Multiple values provided for prin ; once as posi-
r k tional argument and again as keyword argument

undefined name used (principal is not a parameter)

illegal
illegal | A required argument (cc) is missing.
=

i
Nterest(5eee, principal = 300, cC = 2)

in
ter‘est(sge’ time = 2, rate = 9.05)

Scanned with CamScanner

-

110 COMPUTER scjgp e
-C 1;1(“”

Now consider the foﬂowing program that creates and uses the fUﬂCti()n inte

discussing SO far,

r'e
€st(), We :
thay,,

3.2 Program to calculate simple interest using a function Interest() that can T€Ceive prip ial
-Ipa

and rate and returns calculated simple interest. Do speci fy default valyes for rate and g Moy, ‘
. le a5 Jp
rogram 2 years respectively. L0y,

def interest(principal, time = 2, rate = 0. 10) :
return principal * rate * time

#_main__
prin = float(input("Enter principal amount :"))
print("Simple interest with default ROI and time values jis - ")
SHE= interest(prin)

print(“Rs.", si1)
roi = float(input(“Enter rate of interest (ROI) : "))

time = int(input("Enter time inyears :"))
print(“Simple interest with your provided ROI and time values js - ")
si2 = interest(prin, time, roi/1e0)

print(“Rs.", si2)

Sample run of above program is as shown below -

Enter principal amount : 6700
Simple interest with default ROI and time values is :

Rs. 1340.0

Enter rate of interest (ROI) : 8

Enter time in years : 3

Simple interest with your provided ROT and time values is -

Rs. 1608.0

3.6 RETURNING VALUES FROM FUNCTIONS

Functions in Python May or may not return value. You already know about it. There canb
broadly tzp types of functions in Python :

me 0 / hl
: functiong that returm Some computed result in terms of a value, fall in this category: T

Mmputed valye jg returned using return statement ag per syntax :

return <value »

Scanned with CamScanner

Chopter 3 + WORKING WITH FUNCTIONS

The value being returned can be one of the following
o a literal © a variable & an expression
For example, following are some legal return statements :

return 5 # literal being returned

return 6+4 # expression involving literals being returned

return a # variable being returned

return a**3 # expression involving a variable and literal, being returned

return (a +8**2) /b # expression involving variables and literals, being returned

returna+b /c # expression involving variables being returned |

When you call a function that is returning a value, the returned value is made available to the
caller function/program by internally substituting the function call statement. Confused ? Well,
don’t be. Just read on, please © .

Suppose if we have a function :

def sum (x, y) :
s=X+Y
return s

And we are invoking this function as :

from sum() will replace this function call.

— *___——————_'_ »
result = sum(5, 3) The returned value

y completed, (i.e., the return statement of
he returned value (8 in our case) will
now the above statement will become

After the function call to sum() function is successfull
function has given the computed sum of 5and 3) t
internally substitute the function call statement. That is,

(internally) :

result =8 - _
This is the returned value after successful completion of
& sum(5, 3). Thus result will now store value 8.

Scanned with CamScanner

COMPUTER ')(_lEllFE W
- \]TH PYT
Hoy

statement ends a function execugon evedn‘ l:‘ hlt Caution il .
middle of the function. A function en b, 1€ function ca of ;
ent it reaches a return statement or al.l statements in retyrping Some valye
OmE _bodv have been executed, whichever occurs other eXpression gp
funlci:uone—bo f{;llowmg function will never reach print() function will be gyg
:::te:enf;s return is reached before that. return value i

Python wil| not :
for it.
def check (a) : ot
a=math.fabs(a)
return a

print(a) € This statement is unreachable because check() functigy
will end with return and control will never reach thiy
statement

check(-15)

o e e e e e e e e e e
.....................................

2. Functions not returning any value (Void functions)

The functions that perform some action or do some work but do not return any compy
value or final value to the caller are called void functions. A void function may or may

have a return statement. If a void function has a return statement, then it takes the follow .
form : '

” For a void function, return statement does not have any
return <— value/expression being returned. '

that is, keyword return without any value or expression. Following are some examples of voi

functions :
Another void function with no retumn statemen
void function but
(sl Ndefioreet(): def greetl(name) :
@ print(“helloz") print("hello”, name
void function with g
return statement def quote() : def prinSum (a, b, c) :
™~ print(“Goodness counts! 159 print("Sumis", a+
B return return '

Scanned with CamScanner

|
Lapfer B WORKING WITH FUNCTIONS
Chap ‘

def gr‘eet()it
print("helloz")

a= gl"eet()
print(a)

A void function (sometimes
called non-fruitful functions)
returns legal empty value of
Python i.e., None to its caller.

The above program will give output as :

helloz
None

Yes, you guessed it right helloz is printed because of greet()’s execution and None is printed
as value stored in a because greef() returned value None, which is assigned to variable a.

Consider the following example :

Code 1 # Code 2

def replicate() : def replicatel() :
print ("$$$%$") return "$$$$$"

print(replicate()) print(replicatel())

Here the outputs produced by above two codes will be :

Outputs : Code 1 Code 2
$$335 $$339
None

I know that you know the reason, why ?
So, now you know that in Python you can have following four possible combinations of
functions :
(i) non-void functions without any arguments
(if) non-void functions with some arguments
(ifi) void functions without any arguments

(iv) void functions with some arguments
Please note that a function in a program can call any other function in the same program.

3.6.1 Returning Multiple Values

Unlike other programming languages, Pyth
function. Isn’t that useful ? You must be wondering, how ? Let’s find out.

on lets you return more than one value from a

To return multiple values from a function, you have to ensure following things :

(i) The return statement inside a finction body should be of the form given below :

return <value1/variablellexpressionl>, <value2/variable2/expression2>, ..

-

r' (i1) The function call statement should receive or use the returned values in one of the

fOllOWing ways :

Scanned with CamScanner

— R Tt W e e e W WL W

Iarger expression; or a statement

] SCOPE OF VARIABLES as a part of larger statement.

(&5

The scope rules of a language are the rules that decide, in which part(s) of the program, a

particular piece of code or data item would be known and can be accessed therein. To
understand Scope, let us consider a real-life situation.

Suppose you are touring a historical place with many monuments. To visit a monument, you have to buy a
ticket. Say, you buy a ticket (let us call it ticketl) to go see a monumentA. As long as, you are inside
monumentA, your ticket1 is valid. But the moment you come out of monumentA, the validity of ticketl is
over. You cannot use ticket! to visit any other monument. To visit monumentB, you have to buy another
ticket, say ticket2. So, we can say that scope of ticket1 is monumentA and scope of ticket2 is monumentB.

Say, to promote tourism, the government has also launched a city-based ticket (say ticket3). A person having

city-based ticket can visit all the monuments in that city. So we can say that the scope of ticket3 is the whole
city and all the monuments within city including monumentA and monumentB.

Now let us understand scope in terms of Python. In
programming terms, we can say that, scope refers to part(s) = rt{s):0F prograr el
of program within which a name is legal and accessible. If it 2 nameis legal andiaceessibieis
seems confusing, I suggest you read on the following lines called scope of the name.
and examples and then re-read this section.

There are broadly two kinds of scopes in Python, as being discussed below.

1. Global Scope

A name declared in top level segment (_main__) of a program is said to have a global scope
and is usable inside the whole program and all blocks (functions, other blocks) contained within

the program.
(Compare with real-life example given above, we can say that ticket3 has global scope within a city as it is
usable in all blocks within the city.)

Scanned with CamScanner

COMPUTER SCiENC
E
116 WITH py.

HQN
S
2. Local Scope o s

A name declared in a function-body is balt_{ to, havegod A global Variaple

i -+t can be used only within this function and the other defined iy fo S a g

scope L.e., 1t can be usea o Cfoo -ouments al (__main iy O

blocks contained under it. The names of formal arguments also —

UCAS

i p
;ectuon). Suc v;?aram
ave glopg scop "l
: - 5 that A!o":a’va”ableisavariabl)
(Compare with real-life example given above, we can say tha WIthInafunCtion.Such va.ed@flneq
. . - r
ticket1 and ticket2 have local scopes within monumentA and said to have Joc, U

!SCODE €5 3
monumentB respectively.)

are said to
have local scope.

A local scope can be multi-level; there can be an enclosing local scope having

= o a hk‘?t o)
scope of an inside block. All this would become clear to you in coming lines. ed |

U\‘a'

Scope Example |

Consider the following Python program (program 3.1 of section 3.4) :

1. def calcSum(x,y) :

R Z=X+Yy # statement -1-

23 return z # statement -2-

4. numl=int(input("Enter first number :")) # statement -1-
5. num2 =int(input("Enter second number :")) # statement -2-
6. sum= calcSum (numl, num2) # statement -3-
7%

print(‘Sum of given numbers is', sum) # statement -4-
A careful look on the program tells that there are three variables numl, num2 and sum definedi

the main program and three variables x, Yy and z defined in the function calcSum(). So, as
definition given above, num1, num2 and sum are

variables (local to function calcSumy())-

pe
global variables here and x, y and z areloa

Let us now see how there would be different scopes for variables in this program by checr
the status after every statement executed. We'll

check the status as per the flow of execution
above program (refer to section 3.4)

L. Linel : def encountered and lines 2-3 are ignored.

: : . ins and go"

2. Line4 (Main.1) : Execution begins an; o 1
Global Environment environment is created. numl 15 addec
numl [§— 3

environment.
Global IEnvir‘anmeﬂt
; numl G- 3
- num2 5»7
. Lines (Main 2) . | ‘
. <) P hum2 is also a
environment, dded to the, elobal
oo.'. .'

|

Scanned with CamScanner

Chapter 3+ WORKING WITH FUNCTIONS 117
* Global Environment 4. Line6 (Main.3) : calcSum() is invoked, so a
numl [F— 3 local environment for calcSum() is created;
num2 &7 LOCR Envinonnent formal arquments x and y are created in local
for calcSum()) :
x[F—3 environment.
yiE}_’7 ot
‘. ."

Global Environment

5. Line2 (<':alcSum.1) : variable z is numl [G— 3 tocal Envirenment
created in the local environment. num2 [G— 2 for calcsum()
L x[F—3
R y&—7
.'...-'.‘ ZE_’ 10

Global Envi t) :
ity Sl 6. Line3 (calcSum.2) : value of z is returned to caller (return

numl [— 3) .
a2 7 ends the function, hence after sending value of s to caller
sum [5— 10 in variable sum (when control is back to Main.3), the local
environment is removed and so are all its constituents).
'o. .0"'

- . X
L]
L E e

7. Line7 (Main.4) : the print statement picks value of sum from its own environment.

8. Program over. Global environment is also removed with the end of the program.

BT e : = e St ©] \

As you can see from above that scope of names num1, num2 and sum is global and scope of
names x, y and z is local.

Variables defined outside all functions are global variables

These variables can be defined even before all the function definitions.

Consider the following example :

X=5 ¢—u"

Variable x defined above all functions. It is also
def func(a): a global variable along with y and z

b=a+1
return b

y = input("Enter number") ‘
Z=y+ func(x)
print(z)

Scanned with CamScanner

COMPUTER SCIENCE Wiry py,
H

118 ON S

TO See
Scope ExamD\E 2 Variaplg
/—’_ v

Consider the following code :

sl
Let us take one more L’XQ]T\P]L.

def calcsum(a, b, €)

2 b # statement -1-
=a+b+C
q e, # statement -2- QR Coge
3, return s
def average (X, ¥, Z)
om = calcsSum (X, Y, Z) # statement -1-
returnsm/ 3 # statement -2-
7. numl = int (input("Number 1)N) # statement -1-
8. num2=int (input("Number 2 :")) # statement -2-
9. num3 = int (input("Number 3 :")) # statement -3-

10. print("Average of these numbers is", average(numl, num2, num3))
statement -4-

Internally the global and local environments would be created as per flow of execution:
1. Linel : def encountered ; lines 2, 3 ignored.

2. Line4 : def encountered ; lines 5, 6 ignored.

3. Line7 (Main.1) : execution of main program begins ; ilzgalain;ironment
global environment created ; num1 added to it. !
Q.... '.'

Global Environment

numl [G— 3

nun2 [~ 7 ' 4. Lines 8, 9 (Main.2 and Main.3) : add num2 and 3
num3 [F— 5 global environment.
‘o o"..

-~

5. Linel0 (Main.4

) . FunCﬁOn v
P av
15 Invoked, so erage() +" Global Environment

a local envj
ir
for average() is S .O?ment numl & 3 =2 Envir‘o"“‘e"t
arguments x ¥ and » formal num2 & 7 for average
local ! Z are created | num3 G 5 |
environment, L | ey
’..i. “".“ y B-7
. -
'i'. "o' \ ‘*,z ‘ar-"' 5

Scanned with CamScanner

o d =~ 48

. WORKING WITH FUNCTIONS
Chapter 3:

6. Line5 (average.l) : Function
calcSum() is invoked, s0 a
local environment for
caleSum() is created, nested
within local environment of

average() ; its formal
arguments (4, b, c¢) are
created in it.

0.. "

Local Environment

_“Global Environment for average()

numl [G— 3
f num2 [7 x [3— 3 Local Environment
b num3 G- 5 B 7 for calcSum()
] / a[@-3
__ z2[@-5 p@E~7
c@-5

s 33— 15

8. Line2 (calcSum.2) : Value of s is
returned to sm of average() and
calcSum() is over, hence the local
environment of calcSum() is

removed.

9. Line6 (average.2
caller (main.4) statement ; average(

.
— -
- ——— .
o —

o

Global Environment

. .
.l.-l" S SEeESEE e

- . LR
- ®aupgunnnnt? - e

Local Environment

Global Environment
for average()

numl [5— 3
num2 [G— 7 Local Environment
num3 [<}—= 5 x 33 for caleSum()
y[3—7 a3 3
2B bE~7
cE—5

7. Linel (calcSum.l) : Variable s is
created within local environment of

calcSum().

Global Environment N\
numi [&— 3
num2 3 7 Local Environment
for average()
PIEE xB=3 @15
y [3—=7
z[43—5 V4

) : Return value is calculated as sm / 3 (i.e., 15/3 = 5.0) and returned to
) is over so its local environment is removed.

4

Global Environment

numl [5— 3
Local Environment numl - 3
M2 (37 for average() l_—_:> num2 [G— 7
num3 [F- 5 x@F-3 z[E@-5 e
y@+7 smE-15 / A
15/38_.5.0 ’ »{.;..-....-----Il'lll --lz;"e e tvaTue

L

——

tatement receives computed value 5.0, prints it and program

10. Linel0 (Main.4) : The print s _
f the program will also be removed.)

is over. (with this global environment 0

Scanned with CamScanner

you need to add global statem
def state1() :

//,.———-———————p globa].tlgers =
tigers =15 _:.

This is an indication noft to

create local variable with print(tigers)

the name tigers, rather use .

global variable tigers. tigers =95
print(tigers)
statel()
print(tigers)

Scanned with CamScanner

| FUNCTIONS
v will give output as :
L s Result of print statement inside statel() function,
/ value of global tigers is printed (which was modified

1 to 15 in previous line).

Z Result of print statement inside main program, thus,
value of global tigers (which is | 5 now) is printed.

0od programming practice, the use of global
s always discouraged as with this programmers
e control over variables and their scopes.

Scanned with CamScanner

m_—

Chapter 3 °

125

WORKING WITH FUNCTIONS

3.9.1 Mutability/lmmutability of Arguments/Parameters and Function Calls

'hen you pass values through arguments and parameters to a function, mutability/ immutabili
5 P ,

also

plays an important role there.

Let us understand this with the help of some sample codes.

sample Code 1.1
O S ——

Passing an Immutable Type Value to a function.

1. defmyFuncl(a):

2 print("\t Inside myFunci1()")

3 pr/int("'\t Value received in 'a' as", a)

4. A= adan

5 E‘Ji‘ﬁt.("'\t Value of 'a‘ now changes to", a)

6 print("\t returning from myFuncl()")

7. #_main__

8. num=3

9. print("Calling myFuncl() by passing 'num' with value", num)
10. myFuncl(num)

1. print("Back from myFunc1(). Value of "num’ is", num)

e

Now have a look at the output produced by above code as shown below :

calling myFuncl() by passing 'num' with value 3

Back from myFuncl(). value of 'num' is @ <+

Inside myFuncl()

value received in 'a' as 3 —
The value got changed from 3 to 8 inside function
1 1
value of 'a' now changes to 5 (s e

returning from myFuncl()

As you can see that the function myFuncl() received the passed value in parameter a and then
changed the value of a by performing some operation on it. Inside myFunc1(), the value (of a)
8ot changed but after returning from myFuncl(), the originally passed variable num remains

unchanged.

Let us see how the memory environments are created for above code (i.e., sample codel).

Scanned with CamScanner

COMPUTER ¢ IEN
126 | YIITH [l(“'{”
|
Memory Environment For Sample Code 1.1
(Note : Passed value is an integer, an immutable type)

(1)« reference count = Theso memory addresses will vary ench
800 816 832 848* timo as those are allocated by Os,

front loaded '?] 14‘ |5’ ‘6‘

data space
!\ ‘ Global
RY Environment
‘ |] Q - Y
[T Lines 7-9 of code of ~Malh

(2) « reference count
800 816 832 864

data space ! r_‘ LSJ U

Global Environment

At line10 (function is called) argume

Vocal num is received in parameter a anq for
Environment lines 1, 2, 3, environment remains the
(myFunc1()) same

(1) (1)
800 816 832 848 864

data space | .., - . - @ . See, the global environmen's

num remains unaffectéd !rom'
changes to variable a of my*

At line 4 Global Environment
\ Local memory enwronmef;' .
'-°°3| E"V (myFunc1() remains the same til lineé &’ 3

r and ¢Of
‘a=a+2) myfunci() gets ovzans Jinef!

--main-
returns (o entof

and the local environi
myfunc1() 1S remove’:

(1)
800 816 832 g4s

d; ‘-..
ata space |;l @ ?

At line?1, when num's ne”“’"

Global — printed Python P ed3 s

Environment remained unchang alﬂed3
and thus away e

num

4
Scanned with CamScanner

i

y WITH
Chapter S WORKING FUNCTIONS 1 27

e Ay D .
So, you just ;a\\ IhOW I ytl'mx? processed an immutable data type when it is passed as argument.
Let us see what happens inside memory if you pass a mutable type such as a list. (Recall that a

setluﬁinC@/C(')llect1011 such as a list internally is stored as a container that holds the references of
individual items.)

sample Code 2.1
o —

Passing a Mutable Type Value to a function-Making changes in place)

def myFunc2(myList):
print("\n\t Inside CALLED Function now")

myList[@] +=2

1

2

3. print("\t List received:", myList)

4

5 print("\t List within called function, after changes:", myList)
6

return

~J

Listl=[1]
8. print("List before function call : ", Listl)

9. myFunc2(Listl)
10. print("\nList after function call : ", Listl)

Now have a look at the output produced by above code as shown below :

List before function call : [1]

Inside CALLED Function now
The value got changed from [1] to [3]

List received: [1] inside function and change GOT
List within call ed funct‘i on, after changes : REFLECTEDto _main__ - .

List after function call :@ PP RS T T

4 Func2() receives a mutable type, a list, this time. The

As you can see that the function my : s ¥
passed list (List1) contains value as [1] and is received by the function in pararr}eter mylist. The
changes made inside the function in the list mylist get reelected in the original list passed, i.e., in

listl of _main__ .

turning from function, it shows the changed value. The

So when vou print its value after re
you print 1 ges made to it are refelected back in the

reason is clear — list is a mutable type and thus chan
caller function.

.":, Let us see how the memory environments are created for above code (i.e., sample code2.1).

Scanned with CamScanner

128 COMPUTER SCIENCE

ITH PYTH(\r
y O
Memory Environment For Sample Code 2 j g
(Note : Passed value is a list, a mutable type)
(1) « reference count
540 556 572 588 604 25000
data space and — . Memo
other memory 4 O} [1 ’ [2 | :E’ @ on earzadwm“
alterations) T even for Compure, it
Chc N
(List1[0] holqs ey
m
J address of vajq 18?25%%)
o | Global Environment el
L
List1 Til Lines 7.9 g
of —Main_

(1)
540 556 572

-[o] [I

[_‘_'_] At line9, function myFuncgr
called ; argument List1 s recg

604
// parameter mylList Both noy Do

address 25000. For fines 1 g 5,
(environment remains the Same '

Global Environment

Local Environment
Listl (myFunc2(0))
myLlst

(1)
540 556 572 588 604 25000

/ / (List1[0] now holds

/ / memory address of
value 3 (588))

k Global Environment
List1

At lined, myListi0]s v
changes to 3 (myList]
2) and thus the 0t &* -‘
mylList now holds r& e'»':f
of value 3. BUT therr‘
location of It m
remains the samé (150
The change o e
address from valee ! N

Jace 18
value 3 has been doné in plé

Local Environment { fie. 00
(myFunc2()) same location of mylis ams the :a"“
myList memory environment rerm functon™
i 's line Lnes

control __main__ fuanf"" myP"

environment of

= 5T .

7 i7" mﬁf
0, when Lis 000
/ Atline 1 to add(e - fvafﬂe 1
Global Environment referring fe reﬂ gl
List1 currently holds %77 ed|

Hence changed !

Scanned with CamScanner

Chapter 3

- WORKING WITH FUNCTIONS

LET Us REVISE

A Function is a subprogram that acts on data and often returns a value
‘unctions e progr i R
Hm.(qons maf\(e handling easier as only a small part of the program is dealt with at a time, thereby
avoiding ambiguity. ‘
By default, Python names the segment with top-level statements (main program) as __main__ .
A Function is executed in an execution frame,

The values being passed through a function-call statement are called arguments (or actual parameters or actual
arguments).

The values received in the function definition/header are called parameters (or formal parameters or formal
arguments).

Python supports three types of formal arguments : parameters (i) Positional arguments (Required arguments),

(ii) Default arguments and (iii) Keyword (or named) arguments.

When the function call statement must match the number and order of arguments as defined in the function

definition, this is called the positional argument matching.

A parameter having default value in the function header is known as a default parameter.

A default argument can be skipped in the function call statement.

The default values for parameters are considered only if no value is provided for that parameter in the function

call statement.

Keyword arguments are the named arguments with assigned values being passed in the function call statement.

A function may or may not return a value.

A function may also return multiple values that can either be received in a tuple variable or equal number of

individual variables.

A function that returns a non-empty value is a non-void function.

Functions returning value are also known as fruitful functions.
A function that does not return a value is known as void function or non-fruitful function.
A void function internally returns legal empty value None.

A function in a program can invoke any other function of that program.

particular piece of code or a data value (e.g., variable) can be accessed is known

The program part(s) in which a
as Variable Scope.

In Python, broadly scopes can either be globa
Python resolves the scope of a name using LEGB rule, i.e.,

Global and Built-in. . A :
A local variable having the same name as that of a global variable, hides the global variable in its function.
The global statement tells a function that the mentioned variable is to be used from global environment.

1 a code-block i.e., once an identifier is declared global, it cannot be

| scope or local scope.
it checks environments in the order : Local, Enclosing,

The global statement cannot be undone i1
reverted to local namespace.

A function can also return multiple values.

ffects the change of value in caller function.

Mutability of arguments/parameter d
Scanned with CamScanner

144

16. Predict the output of the following code fragment ?

def func(message, num=1):
print(message * num)

func('Python')
func('Easy', 3)
Solution.
Python
EasyEasyEasy

17;

def fun(s):
k =1len(s)
man e
for iin range(0,k):
if(s[i].isupper()):
m=m+s[i].lower()
elif s[i].isalpha():
m=m+s[i].upper()
else:
m=m+"bb'
print(m)
fun('school2@com')
Solution.

SCHOOLbbbbCOM

18. Find and write the output of the following python code :

def Change(P, Q=30):
P=P+Q
Q=P-Q
print(P,"#",Q)
return (P)

R =150

S =100

R = Change(R,S)

print(R,"#",S)

S = Change(S)

Solution.

150 # 50

150 # 100
100 # 70

19. Predict the output of the following code fragment ?
def check(nl=1, n2=2):
nl=nl+n2

Find and write the output of the following python code :

CO
MPUTER SCIENCE Wity !
f 0)

[CBSI‘, Samp]., Pane. -

[CBSE Sample Paper /%%

Scanned with CamScanner

3: WORKING WITH FUNCTIONS
Ll

Chae!
n2+=1
print(nl, n2)

check()
check(2, 1)
check(3)
golution.
383
BR2
53

What is the output of the following code?
a=1
deff():
a=10
print(a)

20.

Solution. The code will print 1 to the console.

71. What will be the output of following code?

def interest (prnc, time =2, rate = 9.10) :
return (prnc * time * rate)

print(interest (6100, 1))
print(interest (5000, rate = 9.05))
pr‘int(inter‘est (5000, 3, 9.12))
print(interest (time =4, prnc = 5000))

Solution.
610.0
500.0
1800.0

2000.0
omment on the following two return statements :

22. Is return statement optional ? Compare and ¢
return

return val
al ONLY WHEN the function is void or we can say that when

Solution. The return statement is option
function that returns a value, must have at least one return

the function does not return a value. A
statement.

From given two return statements, statement

return
is not returning any value, rather it returns the control to caller along with empty value None. And

the statement
return val

is returning the control to caller along with the value contained in variable val.

|

Scanned with CamScanner

COMPUTER SCIENCE WITH PYTH
0
146 "

e integer and returns the one’s position digit of the integey,

Write a function that takes a positit

rJ
O

Solution.

def getOnes(num): .
g# return the ones digit of the integer num

onesDigit = num% 10
return onesDigit
' ' nd prints the equivalent number in other nymy, 5
Write a function that receives an octa{ number and p q er base y
decimal, binary and hexadecimal equivalents.

Solution.
def oct2others(n) :

print("Passed octal number :", n)
numString = str(n)
decNum = int(numString, 8)
print("Number in Decimal :", decNum)
print("Number in Binary :", bin(decNum))
print("Number in Hexadecimal :", hex(decNum))

num = int(input("Enter an octal number :"))

oct2others(num)
Please recall that bin() and hex() do not return numbers but return the string-representations of

equivalent numbers in binary and hexadecimal number systems respectively.

25. Write a program that generates 4 terms of an AP by providing initial and step values to a function that returns
first four terms of the series.

Solution.
def retSeries(init, step):
return init, init+step, init+2*step, init+3*step

ini=int(input("Enter initial value of the AP series : =)
st = int(input("Enter step value of the AP series - "))
| print("Series with initial value", ini, "& step value”, st, "goes as:")
t1, t2, t3, t4 - retSeries(ini, st)
print(t1, t2, t3, t4)

GLOSSA RY
T
H:v‘/”:;:i“m’ ':hVC’]UO vPl‘OVi.ded_':tcia a function in the function call statement.
o The order of execution of statements during a program run.
Parameter A name used inside o function 1o refer to the value which was passed to it as an argument
Function Nomed subprogram that acts on data and often returns a value

Actual Argument Argument
Actual Parameter Argument
Formal Parameter Paromefer
Formal Argument Parameter

. A CCeSS i
Scope Program part(s) in which a Particular piece of eods or a data value (e.g., variable) can be @

Scanned with CamScanner

