
A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.

def Function_Name(list of parameters):

 …………………………………………….
 ………Body of function.………..…..

 …………………………………………….

Function_Name(list of parameters):

Formal Parameters

Called Function

Keyword to define

a function

User defined

function name

Actual Parameters

Calling Function

In Python a function is defined using the def. keyword:

def my_function():

 print("Hello from a function")

To call a function, use the function name followed by parenthesis:

def my_function():

 print("Hello from a function")

my_function() # Calling statement of my_function()

Information can be passed to functions as parameter.

Parameters are specified after the function name, inside the parentheses.

You can add as many parameters as you want, just separate them with a
comma.

Actual Parameter: Used inside the Calling function.

Formal Parameter: Used inside the Called function/ function definition

The following example has a function with one parameter (fname). When
the function is called, we pass along a first name, which is used inside the

function to print the full name:

def my_name(fname):

 print(fname + " Birla")

my_name ("Ram")

my_name ("Shyam")

my_name ("Gopal")

Output:

Ram Birla

Shyam Birla

Gopal Birla

The following example shows how to use a default parameter value.

If we call the function without parameter, it uses the default value:

def my_country(country = "Norway"):

 print("I am from " + country)

my_country ("Sweden")

my_country ("India")

my_country ()

my_country ("Brazil")

Output:

I am from Sweden

I am from India

I am from Norway

I am from Brazil

You can send any data types of parameter to a function (string, number,

list, dictionary etc.), and it will be treated as the same data type inside the
function.

E.g. if you send a List as a parameter, it will still be a List when it reaches
the function:

def my_food(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_food(fruits)

Output:

apple

banana

cherry

To let a function return a value, use the return statement:

def my_function(x):

 return 5 * x

print(my_function(3))

print(my_function(5))

n=my_function(9)

print(n)

Output:

15

25

45

You can also send arguments with the key = value syntax.

This way the order of the arguments does not matter.

def my_function(child3, child2, child1):

 print("The youngest child is " + child3)

my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus")

Output: The youngest child is Linus

Note: The phrase Keyword Arguments are often shortened to

kwargs in Python documentations

If you do not know how many arguments that will be passed into your

function, add a * before the parameter name in the function definition.

This way the function will receive a tuple of arguments, and can access the
items accordingly:

If the number of arguments are unknown, add a * before the parameter
name:

def my_function(*kids):

 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

Output: The youngest child is Linus

The scope of a variable is the range of program where that

variable can access. A variable is visible within its scope and

invisible or hidden outside it.

Private Scope: if the variable declared inside a function then it is

private / local scope. This variable can access only inside the

function in which it is declared. It cannot access outside thee

function

Public Scope: if the variable declared outside the function then

it is public / global scope. This variable can access anywhere in

whole program or it can access in all functions.

Visibility of Variable: A variable is visible in its scope and

invisible out of its scope.

Note: if both public and private scoped variables are in a function

/ block then the private scope variable will be accessed and

public scope variable will not access. This is because, the

private scope variable has higher visibility priority than public

scope variable. In other words the private scope hides the

visibility of public scope variable.

Num=1000 # public scope variable

def First_function():

 Num=10 # private scope variable

 print("Num inside First fun(): ", Num)

Output: 10

def Second_function():

 Num=20 # private scope variable

 print("Num inside Second fun(): ",Num)

def Third_function():

 print("Num inside Third fun(): ",Num)

First_function()

Second_function()

Third_function()

print("Num outside functions: ",Num)

Function definitions cannot be empty, but if you for some reason have

a function definition with no content, put in the pass statement to avoid

getting an error.

def myfunction:

 pass

having an empty function definition like this, would raise an error without the pass statement

Output: 20

Output: 1000

Output: 1000

Python also accepts function recursion. Recursion is a common

mathematical and programming concept, which means a defined function
can call itself. This has the benefit of meaning that you can loop through
data to reach a result.

Recursion can be quite easy to slip into writing a function which never
terminates, or one that uses excess amounts of memory or processor

power. However, when written correctly recursion can be a very efficient
and mathematically-elegant approach to programming.

def tri_recursion(k):
 if(k>0):
 result = k+tri_recursion(k-1)
 print(result)
 else:
 result = 0
 return result
print("\n\nRecursion Example Results")
tri_recursion(6)

In this example, tri_recursion() is a function that we have defined to call

itself ("recurse"). We use the k variable as the data, which decrements

(-1) every time we recurse. The recursion ends when the condition is not

greater than 0 (i.e. when it is 0).

Output: Recursion Example Results

1

3

6

10

15

21

Sum of n numbers by using recursion.

def sum_of_n_numbers(n):

 if n==1:

 return n

 else:

 return n+sum_of_n_numbers(n-1)

sum=sum_of_n_numbers(4)

print(sum)

Factorial using recursion

def fact_rec(n):

 if(n==0):

 return 1

 else:

 return n*fact_rec(n-1)

num=5

f=fact_rec(num)

print("Factorial of %d is %d"%(num,f))

sum of list elements by using recursion

def sum_of_list(p):

 if(len(p)==0):

 return 0

 else:

 return p[0]+sum_of_list(p[1:])

list=[2,4,5,7,9,1]

t=sum_of_list(list)

print(t)

