
Python Control Statements

In any programming language a program may execute

sequentially, selectively or iteratively. Every

programming language provides constructs to support

Sequence, Selection and Iteration. In Python all these

construct can broadly categorized in 2 categories.

A. Conditional Control Construct

(Selection, Iteration)

B. Un- Conditional Control Construct

(pass, break, continue, exit(), quit())

Python have following types of control statements

1. Selection (branching) Statement

2. Iteration (looping) Statement

3. Jumping (break / continue)Statement

Conditional Control

Statements

Un Conditional Control

Statements

Python Iteration Statements
The iteration (Looping) constructs mean to execute the block of

statements again and again depending upon the result of condition.

This repetition of statements continues till condition meets True result.

As soon as condition meets false result, the iteration stops.

Python supports following types of iteration statements

1. while

2. for

Four Essential parts of Looping:

i. Initialization of control variable

ii. Condition testing with control variable

iii. Body of loop Construct

iv. Increment / decrement in control variable

Python while loop

The while loop is conditional construct that executes a block of

statements again and again till given condition remains true. Whenever

condition meets result false then loop will terminate.

Syntax:

Initialization of control variable

while (condition):

 …………………..

 Updation in control variable

 ..…………………

Flowchart

Example: print 1 to 10 numbers

num=1 # initialization

while(num<=10): # condition testing

 print(num, end=” “)

 Body of loop

num + = 1 # Increment

Example: Sum of 1 to 10 numbers.

num=1

sum=0

while(num<=10):

 sum + = num

 num + = 1

print(“The Sum of 1- 10 numbers: “,sum)

Example: Enter per day sale amount and find average sale for a week.

Python range() Function

The range() function returns a sequence of numbers, starting from 0

by default, and increments by 1 (by default), and ends at a specified

number. The common format of range() is as given below:

range (start value, stop value, step value)

Where all 3 parameters are of integer type

Start value is Lower Limit

Stop value is Upper Limit

Step value is Increment / Decrement

Note: The Lower Limit is included but Upper Limit is not included in result.

Example

range(5) => sequence of 0,1,2,3,4

range(2,5) => sequence of 2,3,4

range(1,10,2) => sequence of 1,3,5,7,9

range(5,0,-1) => sequence of 5,4,3,2,1

range(0,-5) => sequence of [] blank list (default Step is +1)

range(0,-5,-1) => sequence of 0, -1, -2, -3, -4

range(-5,0,1) => sequence of -5, -4, -3, -2, -1

range(-5,1,1) => sequence of -5, -4, -3, -2, -1, 0

L=list(range(1,20,2)

Print(L) Output: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

Start and Step Parameters are

optional default value will be as

Start=0 and Step=1

Python for loop

A for loop is used for iterating over a sequence (that is either a list, a tuple, a

string etc.) With for loop we can execute a set of statements, and for loop can

also execute once for each element in a list, tuple, set etc.

Example: print 1-10 numbers Example: print 10-1 numbers

for num in range(1,11,1): for num in range(10,0,-1):

 print(num, end=” “) print(num, end=” “)

Output: 1 2 3 4 5 6 7 8 9 10 Output: 10 9 8 7 6 5 4 3 2 1

Print each element in a fruit list:

fruits = ["mango", "apple", "grapes", "cherry"]

for x in fruits:

 print(x)

output:

mango

apple

grapes

cherry

for x in "TIGER":

 print(x)

output:

T

I

G

E

R

Membership Operators:

The “in” and “not in” are membership

operators. These operators check either

given value is available in sequence or not.

The “in” operator returns Boolean True

result if value exist in sequence otherwise

returns Boolean False.

The “not in” operator also returns Boolean

True / False result but it works opposite to

“in” operator.

else in for Loop

The else keyword in for loop specifies a block of code to be executed when the

loop is finished:

for x in range(4):

 print(x, end=” “)

else:

 print("\nFinally finished!")

output: 0 1 2 3

 Finally finished!

Nested Loops

A nested loop is a loop inside another loop.

city = ["Jaipur", "Delhi", "Mumbai"]

fruits = ["apple", "mango", "cherry"]

for x in city:

 for y in fruits:

 print(x, “:”,y)

output:

Jaipur : apple

Jaipur : mango

Jaipur : cherry

Delhi : apple

Delhi : mango

Delhi : cherry

Mumbai : apple

Mumbai : mango

Mumbai : cherry

Un- Conditional Control Construct
 (pass, break, continue, exit(), quit())

pass Statement (Empty Statement)

The pass statement do nothing, but it used to complete the syntax of

programming concept. Pass is useful in the situation where user does not

requires any action but syntax requires a statement. The Python compiler

encounters pass statement then it do nothing but transfer the control in flow of

execution.

a=int(input("Enter first Number: "))

b=int(input("Enter Second Number: "))

if(b==0):

 pass

else:

 print("a/b=",a/b)

for x in [0, 1, 2]:

 pass

Jumping Statements
break Statement

The jump- break statement enables to skip over a part of code that

used in loop even if the loop condition remains true. It terminates to

that loop in which it lies. The execution continues from the

statement which find out of loop terminated by break.

n=1

while(n<=5):

 print("n=",n)

 k=1

 while(k<=5):

 if(k==3):

 break

 print("k=",k, end=" ")

 k+=1

 n+=1

 print()

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 break

 print(x)

output: apple

Output:

n= 1

k= 1 k= 2

n= 2

k= 1 k= 2

n= 3

k= 1 k= 2

n= 4

k= 1 k= 2

n= 5

k= 1 k= 2

Continue Statement

Continue statement is also a jump statement. With the help of

continue statement, some of statements in loop, skipped over

and starts the next iteration. It forcefully stop the current

iteration and transfer the flow of control at the loop

controlling condition.

i = 0

while i <=10:

 i+=1

 if (i%2==1):

 continue

 print(I, end=” “)

output: 2 4 6 8 10

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 continue

 print(x)

output:

apple

cherry

Thanks

