Using Python Libraries

Dividing a bigger program into smaller manageable units is a good strategy of programming. These smaller units are called Libraries in Python. A Library is a collection of various similar modules. The module cater to specific type of need or application.

For example Numpy module used for scientific computing needs in python. We can also create user defined module in Python.

Python Library

The library is collection of modules / packages that together cater to a specific type of application or requirement.

1. Python Standard Library

Python Standard Library contains some commonly used modules in Python as given below:

- math module: Provides a collection of mathematic functions to support different calculations.
- cmath module: Provides mathematical functions for complex numbers.
- random module: Provides functions for generating pseudo-random numbers.
- statistics module: Provides statistics mathematical functions
- 2. Python Numpy Library

This library provides some advance functionalities to create and manipulate numeric array.

- **3. SciPy Library: Provides algorithmic and mathematical tools for scientific calculations.**
- 4. tkinter Library: It provides traditional Python user interface toolkit and used to create user friendly GUI applications.
- **5. matplotlib Library:** This library provides various tools to produce variety of plots, charts, graphs etc.

Import Module in Program

Python Module is a collection of various function and to use these functions in program an import statement take place before start the program.

There are two forms to import Python Library.

1. To import entire module (import with all functions of module)

Syntax: import <module_name> OR

Import <module_name> as alias_name

Example: import numpy as np

import math

2. To import selected function.

Syntax: from <module_name> import <list_of_objects>

Example: from math import pi, pow

from math import sqrt as sq

from math import * (it is similar to import math)

[* mean , all objects of module should import]

Program: write function to find the square root of given number.

```
from math import sqrt
def square_root(n):
    if(n>=0):
        return sqrt(n)
    else:
        print("-ve Number not allowed")
        return ValueError
n=5
print(square_root(n))
```

Built-in mathematical functions

Python provides many built-in mathematical functions (import math) which directly used as per requirement. Some of them are as given below-

Function	Description	Example
len()	Return length of sequence	len("abc xyz") gives 7
pow()	Return a ^b where a and b are given	pow(2,3) gives 8
str()	Convert a number into string	str(123) gives "123"
int()	Convert string into integer value	int("125") gives 125
float()	Convert string into float value	float("12.5") gives 12.5
range()	Returns an immutable sequence type	range(3) gives 0,1,2
type()	Returns the data type of parameter	type(12.5) gives <class 'float'=""></class>
id()	Return the memory address of variable	A=10 id(A) gives like 1510705760
round()	Return the round off value	round(12.21561,2) gives 12.22

Built-in string functions`

Python provides many built-in string functions which directly used as per requirement. Some of them are as given below-

Function	Description	Example
join()	Join a string or character after each	"*".join("KVS")
	member of string iterator.	Output: K*V*S
	"**".join("KVs")	
	Output: K**V**S	"*".join(123)
	"\$\$".join(["KVS","JJN"])	Output:
	Output: KVS\$\$JJN	TypeError: can only join an iterable
split()	Split a string based on given	"KV JJN RO JPR".split()
	character (default space) and return	Output:
	list of strings.	['KV', 'JJN', 'RO', 'JPR']
	"KV, JJN, RO, JPR".split()	
	Output:	"KV JHUNJHUNU JAIPUR".split("J")
	['KV', ' JJN', ' RO', ' JPR']	['KV ', 'HUN', 'HUNU ', 'AIPUR']
replace()	Replace the word or part of word of	"Jhunjhunu".replace("J","T")
	string with given string. It is case	Output: Thunjhunu
	sensitive.	

Built-in random module functions

Python provides some built-in random number generator (import random) functions which directly used as per requirement. Some of them are as given below-

Function	Description	Example
random()	It returns a random	random.random()
	floating point number N	0.021543
	in the range of 0.0<=	
	N<1.0	
	(It can returns 0.0 but	
	never 1.0)	
randint(a,b)	It returns a random	random.random(2,7)
	integer number N in the	Generate an integer random
	range of a<= N<=b	number between 2 and
		7(both are inclusive)
randrange(start,stop,step)	Returns integer random	random.randrange(5,2,-1)
start and step- optional	selected number from	output: may be 5,4,3
default start=0, step=1	range.	
	(Upper Limit is	random.randrange(5)
	exclusive)	output: may be any of
		number : 0,1,2,3,4

Structure of Package

Python Package / Library is a collection of modules under common namespace. This namespace is created as a directory that contains all related modules. In order to create a package importable in the Python programs, we have to create a _ _init_ _.py file in the namespace (directory). A Package can contain other sub packages inside it. Every sub package should have their individual__init__.py file to make each sub package importable. _ _init_ _.py file may be an empty file.

Example of Package

LibrComputerSubjects	Main Package
details.py	1
ComputerScience	Sub Package -1
initpy	
CSXI.py	
CSXII.py	
InformaticsPractices	Sub Package-2
initpy	~
IPXI.py	Modules under
IPXII.py	Sub Package-2

Procedure for Creating Package

Step-1: Open the **Site-Package folder** (directory) of your Python installation.

Path of Site-Package directory can find by using following commands in python interactive mode.

- A. import sys
- B. print(sys.path)

```
Step-2: In site-package directory, create own directory (main package).
Remember there should not any space or special character in package name.
```

Example: LibrComputerSubjects

Step-3: Save the **___init __.py** file in main package by using python interpreter.

Step-4: Save different modules in package by using python interpreter. These modules should contains various user defined function for various purposes.

Example: details.py # Module name

Write code in details.py file

module under LibrComputerSubjects Main Package def subjects(): print("CBSE runs 2 Computer subjects") print("1. Computer science") print("2. Informatics practices")

def classes():

print("CBSE runs Computer subjects in two classes") print("1. XI- computer science and informatics practices") print("2. XII-computer science and informatics practices")

Step-5 Repeat Step-2, Step-3 and Step-4 for creation of sub package under main package

Key Points to remember:

- 1. Package name and module name should be in mind.
- 2. User defined function name created in specific module should be in mind.
- If function required any parameter then the type and number of parameter should be remembered.

Step-6 Open a new Python file and write the code given below.

import LibrComputerSubjects.details as cs

<mark>cs.subjects()</mark>

<mark>cs.classes()</mark>

Run the program and check the output:

Output:

CBSE runs 2 Computer subjects

- **1.** Computer science
- 2. Informatics practices

CBSE runs Computer subjects in two classes

- 1. XI- computer science and informatics practices
- 2. XII-computer science and informatics practices

Assignment: Create above package and sub packages structure given in image and create their modules and implement in programming.