

Conclusion:

 One type of structure in images are repeatedly used.

 Repetition is for the limited numbers of time that mean it is not for infinite times.

 Every image has its specific start point and end point.

 These images with this type of structure are the examples of recursion.

 Recursion is similar to Iteration (looping) in Python programming Language.

Recursion is a way of programming, in which a function calls

itself directly or indirectly. In other words, a function calls

itself inside the body of itself for the finite time.

def Function_Name(parameters):

 ……………………………………………..
 ……………………………...………..……

 ….Function_Name(Parameter)….
……………………………………………..

Function_Name(parameters):

Formal Parameters

Body of Function

User defined

function name

Actual Parameters

Calling Function

Function abc() calling itself in its body. So it

is direct recursive function.

Function abc() calling to

another function-pqr() and

pqr() calls to abc(). So it is

indirect recursive function.

Recursion is a technique for solving a large problem by applying the same

procedure repeatedly to reduce it to successively smaller problem.
Recursive function essentially required following two parts for its
implementation

1. Base case (one or more) in function

 Base case is a statement in recursive function, whose result is

known or result computed without any recursion statement.

 When base case “not defined” or “not reached” in recursive

function then infinite recursion will occur and there will be
abnormal termination of program. That mean base case must be

execute in the function.

2. Recursive step in function

 Recursive step is a statement in function that calls itself with some
parameters to repeat the same procedure.

 Recursive step should not call endless otherwise function will
caught by infinite recursion.

Program-1

Write function to find sum of n-numbers and use recursion in function.

def sum_of_number(n):

 if (n==1):

 return 1

 else:

 return (n+sum_of_number(n-1))

last_num=5

total=sum_of_number(last_num)

print("Sum of numbers from 1 to ",last_num,"=",total)

Output:

Sum of numbers from 1 to 5 = 15

sum_of_number(5) # Initial function call

5+sum_of_number(4) # First recursion call

5+(4+sum_of_number(3)) # Second recursion call

5+(4+(3+sum_of_number(2))) # Third recursion call

5+(4+(3+(2+sum_of_number(1)))) # Fourth recursion call

5+(4+(3+(2+1)))

5+(4+(3+3))

5+(4+6)

5+10

15

 Recursion and iteration are interchangeable in nature.

 When a loop repeats then same memory locations used for variables used in

loop.

 Loop repeats same code each time when it repeats.

 In recursion, the fresh memory locations reserved for each recursive function

call.

 In recursion, same code will not repeat for its recursive call.

 Recursion requires more resource in terms of RAM (memory space) and

processor utilization compare to iteration.

 Recursion is slower process than Iteration due to extra memory

manipulation.

 Sometimes recursion makes the code easier to understand than Iteration.

Program-2

Write function to find factorial of given number by using

(1) Iteration

(2) Recursion

(1) By Iteration

def factorial(num):
 f=1
 while(num>=1):
 f=f*num
 num=num-1
 return f

fact=factorial(5)
print("Factorial=",fact)

Output:
Factorial=120

(2) By Recursion

def factorial(num):
 if (num==1):
 return 1
 else:
 return num*factorial(num-1)

fact=factorial(5)
print("Factorial=",fact)

Output:
Factorial=120

Q.1 Write function to find the sum of list elements by using recursion.

Q.2 Write function to find GCD (Greatest Common divisor) of 2 numbers.

Q.3 Write function to find the square of given numbers.

