
RDBMS Concepts and

MySQL Commands

Database Languages
Database provides following facilities or languages for working.

1. DDL (Data Definition Language)

2. DML (Data Manipulation Language)

3. TCL (Transition Control Language)

4. DCL (Data Control Language)

5. SCL (Session Control Language)

DDL (Data Definition Language)
DDL language provides the various commands those works on

the structure of database. It includes the following commands.

1. CREATE TABLE

2. ALTER TABLE

3. MODIFY

4. DROP TABLE

DML (Data Manipulation Language)

DML language provides the various commands those works on

the data stored in the database. It includes the following

commands.

1. INSERT INTO

2. SELECT FROM

3. UPDATE

4. DELETE

DDL Commands

1. Create Database:

 CREATE DATABASE school;

2. Show Databases or Tables :

 SHOW DATABASES;

3. Show Tables :

 SHOW TABLES

3. Change Database:

 USE student;

Create Table:

CREATE TABLE student

(

 Rollno INT primary key,

 Name CHAR(20) NOT NULL,

 Class VARCHAR(20),

 City VARCHAR(20),

 Mobile INT,

 Marks FLOAT

);

ALTER Table:
* Add New Attribute “Age” in student table.

 ALTER TABLE student

 ADD Age INT;

* Delete existing Attribute “Mobile” from student table.

 ALTER TABLE student

 DROP COLUMN Mobile;

* Change size of Attribute City(20) to City(30).

 ALTER TABLE student

 MODIFY City VARCHAR(30);

Exercise:

• Change Datatype of any Attribute

• Add NOT NULL constraint to any Attribute

• Delete constraint from any Attribute.

• Change Datatype of Attribute

 ALTER TABLE student

 MODIFY Name VARCHAR(30);

• Add NOT NULL constraint to Attribute

 ALTER TABLE student

 MODIFY Rollno INT NOT NULL;

• Delete constraint from Attribute.

 ALTER TABLE student

 DROP COLUMN Age;

Special:

Add Primary Key constraint to Rollno Attribute.

 ALTER TABLE student

 ADD PRIMARY KEY (Rollno);

Remove Primary Key constraint from Rollno Attribute.

 ALTER TABLE student

 DROP PRIMARY KEY

• Remove the whole Table (structure) from database.

 DROP TABLE student;

(The table itself and all the records stored in it will be deleted

permanently from the database and it will not be recovered.

DML Commands
INSERT INTO: Insert a New Record into Table

INSERT INTO student

VALUES(01, ’Aman’, ‘XI A’, ‘Jhunjhunu’, 16);

INSERT INTO student(Name, Age, Rollno, City)

VALUES(’Kamal’, 15,02, ‘Jhunjhunu’);

Rule:

* The Sequence of data values must be as the sequence of

attribute in table.

* The Numeric Values should be without any quotation mark

where the character, string and date values must be enclosed

between single quotation marks.

SELECT FROM: Select data from Table

1. SELECT * FROM student;

Rollno Name Class City Age

01 Aman XI A Jhunjhunu 16

02 Kamal Jhunjhunu 15

SELECT FROM: Select data from Table

 SELECT * FROM student

 WHERE age=15;

Rollno Name Class City Age

02 Kamal Jhunjhunu 15

Here * denote to all attributes. If we want to display only name

and city of student then write the query as…

UPDATE: Change data of Table

Query: Change the class of all students as ‘XI B’

UPDATE student

SET Class=‘XI B’ ;

To display the changes write….

SELECT * FROM student;

Rollno Name Class City Age

01 Aman XI B Jhunjhunu 16

02 Kamal XI B Jhunjhunu 15

UPDATE: Change data of Table

Query: Change the class of student Kamal as ‘XI C’

UPDATE student

SET Class=‘XI C’ ;

WHERE Name=‘Kamal’ ;

To display the changes….

SELECT * FROM student;

Rollno Name Class City Age

01 Aman XI B Jhunjhunu 16

02 Kamal XI C Jhunjhunu 15

Various SQL Commands / Operators

WHERE clause: used to add any criteria in query.

UPDATE student SELECT * FROM student

SET Class=‘XI C’ OR WHERE Age>15 ;

WHERE Name=‘Kamal’ ;

DISTINCT: used to display data without repetition.

SELECT DISTINCT(City) FROM student

OUTPUT: DISTINCT(City)

 Jhunjhunu

Look at the output of following query: City

SELECT City FROM student --------------

 Jhunjhunu

 Jhunjhunu

LIKE clause: Pattern Matching in criteria. Two wild cards are used

for pattern matching.

1. % : It represent to any number of characters.

2. _ : It represent to only one character.

SELECT * FROM student

WHERE Name LIKE ‘%n;

It will show the records whose name ends with ‘n’ alphabet.

Rollno Name Class City Age

01 Aman XI B Jhunjhunu 16

ORDER BY clause: Display the records either in Ascending order

or Descending Order.

1. ASC : It used for Ascending Order

2. DESC: It used for Descending Order

(Note: By default order is ascending.)

SELECT * FROM student

ORDER BY Name Desc;

Rollno Name Class City Age

02 Kamal XI C Jhunjhunu 15

01 Aman XI B Jhunjhunu 16

IS: Used to Search NULL Values only.

SELECT * FROM student

WHERE City IS NULL ;

It will show only those records whose city values are NULL.

IS NOT: Used to Search other than NULL Values only.

SELECT * FROM student

WHERE City IS NOT NULL ;

It will show records which values of city are other than NULL.

IN: Search in multiple strings..

SELECT * FROM student

WHERE City IN (‘Jhunjhunu’, ‘Jaipur’, ‘Ajmer’);

 IN operator works similar to Logical OR operator.

Rollno Name Class City Age

01 Aman XI B Jhunjhunu 16

02 Kamal XI C Jhunjhunu 15

GROUP BY Clause:

It will display the records in groups with similar type of values.

SELECT * FROM student

GROUP BY City;

It will show records in groups based on city.

Rollno Name Class City Age

01 Aman XI B Jhunjhunu 16

02 Kamal XI C Jhunjhunu 15

HAVING Clause: It used to include a condition with GROUP BY

Clause. (Where command is not allowed with group)

SELECT * FROM student

GROUP BY City

HAVING Age>14;

It will show records in groups based on city and age should

greater than 14.

Rollno Name Class City Age

01 Aman XI B Jhunjhunu 16

02 Kamal XI C Jhunjhunu 15

MySQL Functions
(A) Mathematical Functions

AVG() Function
 The AVG() Function

 The AVG() function returns the average value of a

 numeric column.

 SQL AVG() Syntax

 SELECT AVG(column_name) FROM table_name;

 SELECT AVG(OrderPrice) AS OrderAverage FROM

Orders;

ABS() FUNCTION
 The ABS() function returns the Absolute value (Positive

value) in the selected column or given numeric value.

 SQL ABS() Syntax

SELECT ABS(column_name) FROM table_name;

 SELECT MAX(OrderPrice) AS LargestOrderPrice FROM

Orders;

Example: ABS(-25.32) Output: 25.32

ABS(-25) output: 25 ABS(-25/3.0) output: 8.333

Count() function
 SELECT COUNT(*) FROM table_name;

(COUNT(*): NULL values in some of columns will be counted as

row number)

 The COUNT(column_name) function returns the number of

values other than NULL.

(COUNT(column_name) : NULL values columns will not count)

MAX() Function
 The MAX() function returns the largest value in the selected

column.

 SQL MAX() Syntax

SELECT MAX(column_name) FROM table_name;

 SELECT MAX(OrderPrice) AS LargestOrderPrice FROM

Orders;

MIN() Function
 The MIN() function returns the smallest value of the

selected column.

 SQL MIN() Syntax

SELECT MIN(column_name) FROM table_name;

 SELECT MIN(OrderPrice) AS SmallestOrderPrice FROM

Orders;

SUM() Function
 The SUM() function returns the total sum of a numeric

column.

 SQL SUM() Syntax

SELECT SUM(column_name) FROM table_name;

 SELECT SUM(OrderPrice) AS OrderTotal FROM Orders;

SQRT() FUNCTION
 The SQRT() function returns the square root of given

POSITIVE number.

 SQL SQRT() Syntax

SELECT SQRT (column_name) FROM table_name;

Example:

SQRT(25) OUTPUT: 5

SQRT(-25) OUTPUT: NULL

SQRT(25.16) OUTPUT: 5.0159

ROUND() Function
 The ROUND() function returns the nearest round off

number of the given number as per arguments.

 SQL round() Syntax

SELECT ROUND(column_name) FROM table_name;

Example:

ROUND(25.238,1) OUTPUT: 25.2

ROUND(25.238,2) OUTPUT: 25.24

ROUND(25.238,0) OUTPUT: 25

ROUND(25.238,-1) OUTPUT: 30

ROUND(151.238,-1) OUTPUT: 150

ROUND(151.238,-2) OUTPUT: 200

TRUNCATE() FUNCTION:

 The TRUNCATE() function returns the number after

removing the part of number as per arguments.

 SQL TRUNCATE () Syntax

SELECT TRUNCATE (column_name) FROM table_name;

Example:

TRUNCATE(25.238,1) OUTPUT: 25.2

TRUNCATE(25.238,2) OUTPUT: 25.23

TRUNCATE(25.238,0) OUTPUT: 25

TRUNCATE(25.238,-1) OUTPUT: 25

TRUNCATE(151.238,-1) OUTPUT: 150

TRUNCATE(151.238,-2) OUTPUT: 100

(B) String Functions
UCASE() / UPPER() Function

 The UCASE() function converts the value of a field to

uppercase.

 SQL UCASE() Syntax

 SELECT UCASE(column_name) FROM table_name;

 SELECT UCASE(LastName) as LastName,FirstName FROM

Persons;

LCASE() / LOWER() Function

 The LCASE() function converts the value of a field to

lowercase.

 SQL LCASE() Syntax

 SELECT LCASE(column_name) FROM table_name;

 SELECT LCASE(LastName) as LastName,FirstName FROM

Persons;

LENGTH() Function

 The LENGTH() function returns the length of the value in a

text field.

 Length of string includes blank spaces also.

 SQL LENGTH() Syntax

 SELECT LENGTH(column_name) FROM table_name;

 SQL LENGTH() Example

SELECT LENGTH(Address) as LengthOfAddress FROM Persons;

Example:

LENGTH(“KVS RO JPR”) Output: 10

LENGTH(“KVS R.O. JPR!”) Output: 13

CONCAT() Function

It takes two string arguments and returns a string after

concatenating both strings.

CONCAT(“KVS”,”JHUNJHUNU”)

Output: KVSJHUNJHUNU

CONCAT(“KVS”, “ “, ”JHUNJHUNU”)

Output: KVS JHUNJHUNU

SUBSTR() FUNCTION

It returns a sub string that get from main string as per given

locations.

Syntax:

SUBSTR(main string, start, length)

Where main string is given string from which sub string to be

find.

Start is initial number of character in main string from where sub

string started.

Length is total number of characters to be in sub string.

SUBSTR(“rajasthan”,3,6)

Output: jastha

SUBSTR(”JHUNJHUNU”,5)

OUTPUT: JHUNU

Note: If length is not given then by default length will be upto

end of string.

INSTR() FUNCTION

This function get two string arguments as main string and sub

string. It finds the sub string in main string and returns its initial

location as number.

If sub string not finds in main string then it returns 0 (zero).

SYNTAX: INSTR(main string, sub string)

Example:

INSTR(“Rajasthan”,”THAN”) Output: 6

INSTR(“Rajasthan”,”khan”) Output: 0

TRIM() Function:

This function will remove the blank space character from leading

and trailing side of string.

LTRIM() Function:

This function will remove the blank space character from leading

side of string.

RTRIM() Function:

This function will remove the blank space character from trailing

side of string.

Examples:

SELECT (“ RAJASTHAN “) OUTPUT: __RAJASTHAN__

RTRIM(“ RAJASTHAN “) OUTPUT: __RAJASTHAN

LTRIM(“ RAJASTHAN “) OUTPUT: RAJASTHAN__

TRIM(“ RAJASTHAN “) OUTPUT: RAJASTHAN

 :: Finished ::

