

Datatype mean type of data that is being stored in
memory during the program execution.

Integer: Stores only numbers without decimal point.
 Example: 10, -20, 0
Float: Stores numbers with decimal point.
 Example: 10.6, -20.4, 0.0

Complex: Stores integer or float type complex numbers
 Example: 10j, -20j, 0j, 5+15j
Boolean: Stores only True or False Values.

 Example: True, False
String: Stores sequence of characters that enclosed

between single or double quotation marks.
 Example: “hello”, ‘kv jjn’, ‘STD 01592’, “a@com”

List: Stores sequence of different types of Values. All
values grouped together in [] brackets.

 Example: [2,6,7,9], [4,”KVS”,18,”Raj”,2.5]

Tuple: Stores sequence of different types of Values. All
values grouped together in () brackets.

 Example: (2,6,7), (4,”KVS”,18,”Raj”,2.5)

Dictionary: Stores sequence of different types of Values.
All values grouped together in { } brackets.

 Example:
{1:”Monday”, 2: “Tuesday”, 3: “Wednesday”},

{“name”:”Ajay”, “Age”:13, “Weight”:21.5}
Set: Stores sequence of different types of Immutable

type of Values. All values grouped together in {

} brackets.
 Example: {2,6,7}, {4,”KVS”,18,”Raj”,2.5}

The immutable datatypes never allow to user to change
their values. That mean the values once assign, cannot
change in future.
Examples:

 Integer
 Float
 Boolean

 String
 Tuples

Mutable datatypes are those datatypes whose values can
be changed. Or the values once assign, can change in
future.

Examples:
 List
 Dictionary

 Set

Sets:

 Set created by using values separated by comma.
 Set elements are unordered and unindexed.
 Set is
 Does not allow to store duplicate values.

 Set cannot contain an element that is mutable.
Examples

Myset1={10,20,30,40}

Myset2={10,20,30,10,20,40} # 10 and 20 are repeated

Myset3={10,[20,30],40} # [20,30] is a List

print(Myset1) #Output: {10,20,30,40}

print(Myset2) #Output: {10,20,30,40}

print(Myset3) #Output: Generate Error

The Variable is named location which is used to store
values. The value of variable can be changed throughout

the whole program execution. Characteristics of Variable
are….
 Variable name should be declared before its use.
 Variable always reserve a memory location to store

value in it.
 The datatype of variable will be as same the type of

value (Literal) assigned to it.

 Value store at memory location can be read by using
variable name.

 Variable name should be follow the rules to declare the

identifiers.

A Variable should be declared before its use otherwise
Python interpreter will generate error.
Syntax:

 Variable_Name = Value
Example:
 First_Name=”Ajay”

Here First_Name is Variable name and “Ajay” is
Value. The Value is of String type so the datatype
of First_Name variable is also string.

Age=15

Here Age is Variable name and 15 is Value. The

Value is of integer type so the datatype of Age
variable is also integer.

City=”Jaipur” # Datatype is string

Phone=9876543210 # Datatype is integer
Principal=5000 # Datatype is integer
Rate=2.5 # Datatype is float

Marks=[56,78,76,98,34] # Datatype is List
Boy= True # Datatype is Boolean
Weight=None # Datatype is None

Assignment mean to store the value at the location
created by variable. Following are the methods to

assignment of variable.

(A) Single Assignment
Syntax:
Variable_Name = Value / Variable / Expression /function

Where = is assignment operator.
At the left side of = operator, there will be variable

always. At the right hand side, there may be any
variable, value, expression or function.
Example:

A=10 # Value 10 assigned to Variable – A
B= A #Value of Variable-A assigned to Variable – B
C=A+B # Result of expression A+B assigned to Variable – C

R=math.sqrt(25) # function’s value assigned to Variable – R

(B) Multiple Assignment
Syntax:
List of Variables separated by comma = List of Values separated

by comma

Example:
A, B, C = 10, 20, 30
It means, A=10, B=20, C=30

NAME, AGE, CITY = “ALOK”, 15, “JAIPUR”
It means NAME=”ALOK”, AGE=15 and CITY=”JAIPUR”

(C) Multi Variable Assignment
Syntax:
Variable-1 = Variable-2 = Variable-3 = Value

Example:
A=B=C=100

Here Value 100 is assigned to of all three variables.

Global Variable Vs Local Variable
Global (Public) Variable is a variable that can access

anywhere in whole program. In other words scope of a
global variable is public.
The variable declared at the beginning of program is by

default global in nature.
To declare a variable as global inside a local block, simply
use the “global“ keyword.
Example:

A=10
def local_area():
 global B

 B=100
 C=200

The operators are symbols or words which can applied on
variables/ values in an expression. Operators trigger
some computation / action when they applied in
expression

Types of Operators
(A) Arithmetical Operator

(B) Relational Operator

(C) Logical Operator

(D) Assignment Operator

(E) Short Hand Operator

(F) Identity Operator

(G) Membership Operator

(H) Bitwise Operator

Variable B is now global

Variable C is Local

Variable A is Global by default

(A) Arithmetical Operator
These operators used for mathematical
operations. These operators always produce a
numeric output.

Operator Purpose Example

+ Addition 10+3 Result: 13

- Subtraction 10-3 Result: 7

* Multiplication 10*3 Result: 30

/ Float Division 10/3 Result: 3.3333

// Floor (Integer) Division 10//3 Result: 3

** Exponential 10**3 Result: 1000

% Modulus (Remainder
after integer division)

10%3 Result: 1

(B) Relational Operator

These operators used between two values and
always produce a Boolean output.
(Boolean Output: True, False)

Operator Purpose Example

< Less than 10<5 Result: False

<= Less than or equals to 10<=5 Result: False

> Greater than 10>5 Result: True

>= Greater than or equals to 10>=5 Result: True

== Equals to 10==5 Result: False

!= Not Equals to 10!=5 Result: True

(C) Logical Operators
These operators used between two relations
and always produce a Boolean output.

(Boolean Output: True, False)
Types of Logical Operators
(i) Logical “and”

(ii) Logical “or”
(iii) Logical “not”

(i) Logical “and”
Realtion-1 Operator Realtion-2 Result
True and True True

True and False False

False and True False

False and False False

Example
10>5 and 20<=15 10>=5 and 20!=15

True and False True and True
Result: False Result: True

(ii) Logical “or”
Realtion-1 Operator Realtion-2 Result
True or True True

True or False True

False or True True

False or False False

Example
10>5 or 20<=15 10<=5 or 20==15

True or False False or False
Result: True Result: False

(i) Logical “not”
not operator is unary type of operator that
requires only one operand to work on.

Operator Realtion Result
not True False

not False True

Example
not (10>5 or 20<=15)
not(True or False)

not(True)
Result: False

not(10<=5) or 20==15
not(False) or False
True or False

Result: True

(D) Assignment Operator (=)
This operator is used to assign the value to a
variable.
Example:
City=”Jaipur”

School= “KV JJN”

(E) Short Hand Operator
These operators are derived from the
arithmetical operators. It can reduce the
length of expression and without affecting the
result.

Rule: An expression can be shorter only if the
same variable is available at the both side of
assignment (=) Operator.

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

(F) Identity Operator
The identity operator used to check that both the

operands reference to same memory location. It
compare the memory location of two variables and

return True or False accordingly.
 is operator

 not is operator

Operator Example Result

is 10 is 5 False

is 10 is 20//2 True

is 10 is 20/2 False

is not 10 is not 5 True

is not 10 is not 5*2 False

(G) Membership Operator (in, not in)

The membership operator used to check that one

operand / value is available in sequence of values.
It compare the operand with each value of

sequence and return True or False accordingly.
 in operator

 not in operator

Operator Example Result

in 10 in [2, 4, 7, 12, 23] False

in 10 in [12, 14, 10, 12, 23] True

not in 10 not in [2, 4, 7, 12, 23] True

not in 10 not in [12, 10, 12, 23] False

(H) Bitwise Operator

The bitwise operators are similar to logical

operators except that bitwise works upon

binary digits.

Types of bitwise Operator
 Bitwise and (&)
 Bitwise or (|)

 Bitwise eXclusive xor (^)
 Bitwise Complement (~)

 Bitwise and (&)

Operand-1 Operator Operand-2 Result

0 & 0 0

0 & 1 0

1 & 0 0

1 & 1 1

 Bitwise or (|)

Operand-1 Operator Operand-2 Result

0 | 0 0

0 | 1 1

1 | 0 1

1 | 1 1

 Bitwise eXclusive xor (^)

It Return 1, if both bits are different else 0

Operand-1 Operator Operand-2 Result

0 ^ 0 0

0 ^ 1 1

1 ^ 0 1

1 ^ 1 0

 Bitwise Complement (~)

It unary operator and inverts the Return of

given bit. If bit is 1 then it will convert into 0
and if bit is 0 then it will convert into 1

Operator Operand Result

~ 0 1

~ 1 0

Operator Priority
The operator priority (Precedence) is the order of
evaluation of operators in an expression. The higher

priority operator will evaluate first.

Operator Description Priority

() Parentheses 1 (Highest)

** Exponentiation 2

*, /, //, % Arithmetical Operators 3

+, - Arithmetical Operators 4

<, <=, >, >=, !=, == All Relational Operators 5

is, is not Identity operators 6

not Logical not 7

and Logical and 8

or Logical or 9 (Lowest)

Note: if more than one same priority operators comes in
an expression then they evaluate from left to right side
as per associativity rule of operators (Except **).

Operator Associativity

Associativity is the order in which an expression (having

multiple operators of same priority) is evaluated.

Rule-1: All the operators of same priority have the left to

right associativity.

Rule-2: Exponential (**) operator has right to left

associativity.

Type Casting
Python provides the various numeric data types like integer,
float and complex. To convert one type of data into other type of
data is term as type casting. It is possible by using some python
functions.
 int()
 float()
 complex()

Example

x = 1 # int
y = 2.8 # float
z = 1j # complex

#convert from int to float:
a = float(x)
#convert from float to int:
b = int(y)
#convert from int to complex:
c = complex(x)
print(a) # Output: 1.0
print(b) # Output: 2
print(c) # Output: (1+0j)
print(type(a)) # Output: <class 'int'>
print(type(b)) # Output: <class 'float'>
print(type(c)) # Output: <class 'complex'>
Note: cannot convert complex numbers into another type.

Python Built-in Functions

Python is very rich in built in functions and libraries.

Built in functions are already created and stored in Python

Interpreter.

1. input() function
The input() used to read the string value from
keyboard. This function works at the program

execution time.
Example:
Name=input(“Enter Your Name: “)
City=input()

2. print() function
The print() used to write/ display any type of value
on screen.

Example:
print(“Hello Students”) # Display only String
print(name) # Display only String value

print(2+5) # Display integer value
print(2.5+5) # Display float value
print(“Your name is:”, name)

Display String and integer type values

3. int() function
int() used to convert the convertible string value in
integer value.

Example:
A=”25”
“25” is in double quotation so it is a string value.

A=int(A) # “25” will convert into integer value
print(A) # Output will be 25 (Without Quotation)
A=”C-25” #”C-25” is string value
A=int(A)

Show error, because “C-25” is not a convertible
string value

4. float() function
float() used to convert the convertible string value
in float value
Example:

A=”-25.5”
A=float(A)
print(A) # Output: -25.5
A=”25.6f”

A=float(A)
print(A) # Output: Error

5. type() function
type() display the datatype of given value or
variable.

Example:
A=100

 print(type(“25”)) # Output: <class ‘str’>
print(type(“KVS”)) # Output: <class ‘str’>
print(type(25)) # Output: <class ‘int’>

print(type(25.5)) # Output: <class ‘float’>
print(type(1+0j)) # Output: <class ‘complex’>
print(type(A)) # Output: <class ‘int’>
print(type(True)) # Output: <class ‘bool’>
print(type(None)) # Output: <class ‘NoneType’>

6. id() function
This function used to find the memory address of iven
variable or value.
Example:

 A=10
 print(id(A)) # 5619710255 (Assumed)

print(id(True)) # 9849702213 (Assumed)
print(id(False)) # 1254770225 (Assumed)
print(id(None)) # 6288732549 (Assumed)
print(id(2.678+6j)) # 2549935457 (Assumed)
print(id(5)) # 5493147895 (Assumed)

7. ord() function

In Python ord(character Value) will return the equivalent ASCII Value of

given Character value.

Ex. ord(‘65’) => output: A

 ord('क') => output: 2325

8. chr() function

In Python chr(ASCII Value) will return the equivalent Character value of

given ASCII.

Ex. chr(42) => Output: *

chr(38) => Output: &

chr(2326) => Output: ख

9. format() function

 the format() used to display the output in
different formatted forms.

 Example:

 Name="Ajay"

 age=16

 city="Jhunjhunu"

 print("Hello ‘{}’ live in city '{}' and hi age is {}
year".format(Name,city,age))

 Output:

Hello ‘Ajay’ live in city 'Jhunjhunu' and hi age is 16 year

random module
import random
random()
it return random floating point number from 0 to 1.
Where 0 is inclusive and 1 is exclusive.
print(random.random()) # output: 0.236486 (Assumed)

randint(a,b)

it return random integer number between a and b.
Where both a and b are inclusive.
print(random.randint(2,5)) # output: 2/3/4/5 (Assumed)

randrange(start, stop, step)
This function gets 3 parameters as
Start: Optional, by default is 0. (Integer)
Stop: Mandatory, Exclusive in result. (Integer)
Step: Optional, by default is 1 (integer)

print(random.randrange(2,20,2))
it will generate an Even random number between 2 and 20
(where 20 is exclusive)

Finish

