

String Literals

A collection of characters which are surrounded by either single

quotation marks or double quotation marks are known as String

in Python. The sequence of characters may include alphabets,

numbers, special characters, white spaces and backslash.

Note: Strings are Immutable (Unchangeable)

'hello' is the same as "hello".

‘Pin 333001’ is the same as “Pin 333001”

‘abc.kvs@gov.in’ is the same as “abc.kvs@gov.in”

You can display a string literal with the print() function:

print("Hello")

print('Hello')

Assign String to a Variable

A string can be create as similar to other variable creation in

Python. For creation of String we just assign a string value to a

variable name followed by an equal sign.

S=”Hello KVS”

Print(s)

Msg=”Who was Developed \”Python\” ?”

Print(Msg)

Output: Who was Developed” Python” ?

You can assign a multiline string to a variable by using three

quotes:

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""

print(a)

a = '''Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.'''

print(a)

Note: in the result, the line breaks are inserted at the same position as

in the code.

Output:

Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.

1. An empty string can be created by assigning "" OR '' to

a variable.

s="" OR s=''

Here s is string type Variable.

Print(s) Output: ''

An empty string can be created by str() constructor also.

s=str()

Print(s) Output: ''

A string can be created from other sequence or by using str()

constructor.

Example:

s=str(258)

Print(s) Output: ‘258’

In Python, strings are ordered sequences of character data, and

thus can be indexed in this way. Individual characters in a

string can be accessed by specifying the string name followed

by a number in square brackets ([]).

String indexing in Python is zero-based: the first character in

the string has index 0, the next has index 1, and so on. The

index of the last character will be the length of the string minus

one.

For example, a schematic diagram of the indices of the

string 'foobar' would look like this:

String indices can also be specified with negative numbers, in

which case indexing occurs from the end of the string

backward: -1 refers to the last character, -2 the second-to-last

character, and so on. Here is the same diagram showing both

the positive and negative indices into the string 'foobar':

Like many other popular programming languages, strings in Python

are arrays of bytes representing unicode characters.

However, Python does not have a character data type, a single

character is simply a string with a length of 1.

Square brackets can be used to access elements of the string.

Get the character at position 1 (remember that the first character has

the position 0):

B= “Hello, World!”

Print(B[1]) # Output: e

Print(B[-2]) # Output: d

Display All String using loop

B= “Hello, World!”

for ch in B:

 print(ch, end=””) # Output: Hello, World!

Python also allows a form of indexing syntax that extracts

substrings from a string, known as string slicing.

Format of string slicing:

String_Variable [Start Index: End Index: Step Value]

Where start, end index and step value separated with colon (:)

Start index is by default Zero (0)

End Index is by default end of string.

Step Value is by default 1

Note:

1. Start index always include in result

2. End index (if given) always exclude in result

3. End index (if not given) then last index of string include

Get the characters from position 2 to position 5 (not included):

b = "Hello, World!"
print(b[2:5])

llo

Use negative indexes to start the slice from the end of the string:

Get the characters from position 5 to position 1, starting the count

from the end of the string:

b = "Hello, World!"
print(b[-5:-2])

Orl

print(b[2:8:2]) low

print(b[2:8:-1]) No Out Put
print(b[::2]) HloWrd
print(b[5:0:-1]) olle

print(b[10:0:-2]) drWol
print(b[::-1]) !dlroW olleH
print(b[::-2]) !lo olH

A string in Python can be reversed by using following ways.

1. By using Traversing (Negative index Traversing)

2. By using loop

Str=”Indian Army”

print(str[-1::-1])
Output: ymrA naidnI

By Using Loop:

 str=”Indian Army”

 size=len(str)

 size=Size-1

 While (size>=0):

 print(str[size], end=””)

 size=size-1

Output: ymrA naidnI

Concatenating string mean joining two or more strings with the

help of + operator and make a new string.

Example:

A=”Hello”

B=”Jhunjhunu”

New_Str=A + B

Print(New_Str)

Output: HelloJhunjhunu

New_Str=A + “ “ + B

Print(New_Str)

Output: Hello Jhunjhunu

New_Str= “Hello”+ 100

Output: It will give error as

Unsupported operand type(s) for +: int and str

The replicating operator * is used to repeating multiple times of a

string to create multiple copies of given string.

Example:

A=”Hello”

Print(A*3)

Output: HelloHelloHello

S = 3 * “Hello-“

Print(S)

Output: Hello-Hello-Hello-

Membership operator is Boolean type operator. It used to check

whether a sub string is present in main string or not.. There are

two membership operators are used in string.

1. in operator: If sub string is present in main string then it

will return True otherwise it will return False result.

2. not in operator: If sub string is not present in main

string then it will return True otherwise it will return

False result.

Example:

Main_str= “This is main string”

Sub_str=”ain”

Result=Sub_str in Main_str

Print(Result)

Output: True

Print(“Ain” in Main_str) # Note A is Capital in Ain.

Output: False

Print(“Ain” not in Main_str)

Output: True

Print(“ain” not in Main_str)

Output: False

The relational operators of Python can also apply on strings

also. The relational operators are also the Boolean operators

and produce either True or False result.

String comparison is different from numeric values

comparison. Python compares the Strings using their ASCII

(American Standard Code for Information Interchange). Python

compares the ASCII values of first letter of each string, if they

are equal then next elements of string compare and so on, until

it finds differ ASCII Values.

Letter ASCII Value

A 65

B 66

Z 90

a 97

a 98

z 122
Example:
S1=”Jhunjhunu”

S2=”Jhunjhunu”

Print(S1 ==S2) Output: True

Print(S1 < S2) Output: False

Print(S1 >=S2) Output: True

Print(S1 > S2) Output: False

Print(S1 != S2) Output: False

In Python by

ord(‘character’) function,

the ASCII value of any

character can be find.

Similarly chr(ASCII Value)

can used to find Character of

given ASCII value.

Strings are immutable in nature in Python. Its mean the content of

string cannot be changed once it is created. In other words, the

assignment operator does not work to change the content of string.

Example:

Str=”Simple”

Str[1]=”a”

Print(str)

Output: TypeError: 'str' object does not support item assignment

Note: All string methods returns new values. They do not change the original

string.

The len() function returns the length of a string:

a="Hello, World!"

print(len(a))

13

The strip() method removes any whitespace from the beginning
or the end:
a = " Hello, World! "
print(a.strip()) # returns "Hello, World!"

Hello, World!

lower() / upper()
a = "Hello, World!"
print(a.lower())
print(a.upper())

hello, world!

HELLO, WORLD!

The replace() method replaces a string with another string:
a = "Hello, World!"
print(a.replace("H", "J"))

Jello, World!

The split() method splits the string into substrings if it finds
instances of the separator:
a = "Hello, World!"
print(a.split(",")) # returns ['Hello', ' World!']

['Hello', ' World!']

Check String

To check if a certain phrase or character is present in a

string, we can use the keywords in or not in.

Check if the phrase "ain" is present in the following text:
txt = "The rain in Spain stays mainly in the plain"
x = "ain" in txt
print(x)

x = "ain" not in txt
print(x)

True

False

String Concatenation

To concatenate, or combine, two strings you can use the

+ operator.

Merge variable a with variable b into variable c:
a = "Hello"
b = "World"
c = a + b
print(c)
c = a + " " + b
print(c)

HelloWorld

Hello World

String Format

As we learned in the Python Variables chapter, we

cannot combine strings and numbers like this:

age = 36

txt = "My name is John, I am " + age

print(txt)

But we can combine strings and numbers by using the

format() method!

The format() method takes the passed arguments,

formats them, and places them in the string where the

placeholders {} are:

age = 36
txt = "My name is John, and I am {}"
print(txt.format(age))

output: TypeError: must be str,
not int

output: My name is John, and I
am 36

Method Description

capitalize()

Converts the first character to upper case and rest in lower case.

str=" Fit India is hit India"

print("str.capitalize()=",str.capitalize())

>> Fit india is hit india

casefold()

Converts string into lower case

str=" Fit India is hit India"

print("str.casefold()=",str.casefold())

>> fit india is hit india

center()

Returns a centered string

Str=”kvsjjn”

Print(str.center(10)

>> kvsjjn (set 10 character length and center the str)

Print(str.center(10,”$”)

>>$$kvsjjn$$

count()

Returns the number of times a specified value occurs in a string

Str= “fit India is hit India”

Print(str.count(“i”))

>> 5

endswith()

Returns true if the string ends with the specified value
txt = "Hello, welcome to my world."
x = txt.endswith("my world.")
print(x)
>>True

find()

Searches the string for a specified value and returns the index of where

it was found(first occurance). It not found then returns -1
txt = "Hello, welcome to my world."
x = txt.find("welcome")
print(x)
>> 7

quantity = 3
itemno = 567
price = 49.95
myorder = "I want {} pieces of item {} for {} dollars."
print(myorder.format(quantity, itemno, price))

I want 3 pieces of item 567 for
49.95 dollars.

You can use index numbers {0} to be sure the arguments are
placed in the correct placeholders:
quantity = 3
itemno = 567
price = 49.95
myorder = "I want to pay {2} dollars for {0} pieces of item {1}."
print(myorder.format(quantity, itemno, price))

I want to pay 49.95 dollars for 3
pieces of item 567

https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_casefold.asp
https://www.w3schools.com/python/ref_string_center.asp
https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_find.asp

format()

Formats specified values in a string

age=100

nm="PL Adwani"

msg="Hello, I am {} is {} year old."

str=msg.format(nm,age)

print(str)

>> Hello, I am PL Adwani is 100 year old.

index()

Searches the string for a specified value and returns the index of where

it was found. If string not found then generate “ValueError: substring

not found”
txt = "Hello, welcome to my world."
x = txt.index("welcome")
print(x)
>> 7

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isdecimal() Returns True if all characters in the string are decimals

isdigit() Returns True if all characters in the string are digits / numeric

isidentifier()

Returns True if the string is an identifier otherwise False

str="kvs_jjn"

print(str.isidentifier())

>>True

islower() Returns True if all characters in the string are lower case

isnumeric() Returns True if all characters in the string are numeric / digit

isspace() Returns True if all characters in the string are whitespaces

istitle()

Returns True if the string follows the rules of a title

str="Kvs jjn"

print(str.istitle())

>> False

str="Kvs Jjn"

print(str.istitle())

>> True

isupper() Returns True if all characters in the string are upper case

lower() Converts a string into lower case

lstrip()

Returns a left trim version of the string
txt = " banana "
x = txt.lstrip()
print("In all fruits", x, "is my favorite")
>> In all fruits banana is my favorite

replace()

Returns a string where a specified value is replaced with a specified

value

https://www.w3schools.com/python/ref_string_format.asp
https://www.w3schools.com/python/ref_string_index.asp
https://www.w3schools.com/python/ref_string_isalnum.asp
https://www.w3schools.com/python/ref_string_isalpha.asp
https://www.w3schools.com/python/ref_string_isdecimal.asp
https://www.w3schools.com/python/ref_string_isdigit.asp
https://www.w3schools.com/python/ref_string_isidentifier.asp
https://www.w3schools.com/python/ref_string_islower.asp
https://www.w3schools.com/python/ref_string_isnumeric.asp
https://www.w3schools.com/python/ref_string_isspace.asp
https://www.w3schools.com/python/ref_string_istitle.asp
https://www.w3schools.com/python/ref_string_isupper.asp
https://www.w3schools.com/python/ref_string_lower.asp
https://www.w3schools.com/python/ref_string_lstrip.asp
https://www.w3schools.com/python/ref_string_replace.asp

txt = "I like bananas"
x = txt.replace("bananas", "apples")
print(x) print(txt)
>> I like apples I like bananas
x = txt.replace("a", "apples")

print(x)

>> I like bapplesnapplesnappless

rsplit() Splits the string at the specified separator, and returns a list

rstrip() Returns a right trim version of the string

split() Splits the string at the specified separator, and returns a list

strip() Returns a trimmed version of the string

title() Converts the first character of each word to upper case

upper() Converts a string into upper case

Assignments:

1. Write a program to find reverse of string.

2. WAP to check that string is palindrome or not.

3. WAP to find number of words in string.

4. WAP to find number of digits in string.

5. WAP to find number of alphabets in string.

6. WAP to print special characters in string.

7. WAP to find Uppercase (Capital) letters in string.

8. WAP to find Lowercase (Small) letters in string.

9. WAP to replace all lowercase in uppercase and vice versa.

10. WAP to count number of articles (a,e,I,o,u) used in string.

11. WAP to count word “this” in string.

12. WAP to print alternate characters of string.

13. WAP to print only those words which start with ‘t’.

14. WAP to print only those words which end with ‘y’.

15. WAP to replace the word “India” with “Bharat”.

https://www.w3schools.com/python/ref_string_rsplit.asp
https://www.w3schools.com/python/ref_string_rstrip.asp
https://www.w3schools.com/python/ref_string_split.asp
https://www.w3schools.com/python/ref_string_strip.asp
https://www.w3schools.com/python/ref_string_title.asp
https://www.w3schools.com/python/ref_string_upper.asp

