

Tuple

A collection of elements which are surrounded by

parenthesis () are known as Tuple in Python. The
sequence of elements may include int, float, String, List,
tuple itself or any other type.

Note: Tuple are Ordered and Immutable (Unchangeable)

Tup=('hello', 'Pin 333001', 'abc.kvs@gov.in')

print(Tup)

Output: ('hello', 'Pin 333001', 'abc.kvs@gov.in')

A Tuple can be create as similar to other variable creation
in Python. For creation of Tuple we just assign a Tuple
values to a variable name followed by an equal sign.

Tup=(20,) Tup=(10,20,30,40,50)

Tup=(10,20.5,30.8,40.4,50,60)

 Tup=("Apple","Mango","Orange")

Tup=(‘A’,’E’,’I’,’O’,’U’])

 Tup=(“Apple”,100,”Banana”,30)

Tup=(10,[2,4,6],"KVS",5.8,'A')

An empty List can be created by assigning () to a

variable.

Tup=()

Here Tup is a tuple type Variable. # Check type(Tup)

Print(Tup) Output: ()

1. An empty tuple can be created by tuple() constructor
also.

tup=tuple()
Print(tup) Output: ()

2. Creation of tuple with one element only.
Syntax:

Tuple_variable=(1-element,) # See the comma
Tp=(10,) # put a comma after element in ()
Print(type(Tp)) Output: <class 'tuple'>
Tp=(10) # No comma after element in ()
Print(type(Tp)) Output: <class 'int'>
Here Tp(10) is similar to Tp=10 of integer type

3. Creation of tuple with more than one element

Syntax:
Tuple_variable=(elements separated by comma)

Tup=(10,20,30,40,50)

Tup=(10,20.5,30.8,40.4,50,60)

Tup=("Apple","Mango","Orange")

Tup=(‘A’,’E’,’I’,’O’,’U’])

Tup=(“Apple”,100,”Banana”,30)

Tup=(10,[2,4,6],"KVS",5.8,'A')

A Tuple can be created from other sequence or by using

tuple() constructor.

Example:

t=tuple("KVS")

Print(t) Output: ('K', 'V', 'S')

t=tuple([20,40,50])

Print(t) Output: (20, 40, 50)

L=[10,20]

S="KV"

T=(100,200)

Tup=tuple((L,S,T)) # tuple(), Requires 1 parameter so

put (L,S,T)

Print(Tup) Output: ([10, 20], 'KV', (100, 200))

In Python, tuples are ordered sequences of element, and

thus can be indexed in this way. Individual elements in a

Tuple can be accessed by specifying the Tuple name

followed by an index number in square brackets ([]).

Tuple indexing in Python is zero-based: the first element
in the Tuple has index 0, the next has index 1, and so on.
The index of the last element will be the length of the Tuple
minus one.

For example, a schematic diagram of the indices of the
Tuple (100,200,300,400,500,600) would look like this:

Tuple indices can also be specified with negative numbers,

in which case indexing occurs from the end of the Tuple

backward: -1 refers to the last element, -2 the second-to-

last element, and so on. Here is the same diagram showing

both the positive and negative indices into the

Tuple (100,200,300,400,500,600):

Square brackets can be used to access elements of the

Tuple.

Get the element at position 1 (remember that the first

element has the position 0):

Tup=(“Apple”,100,”Banana”,30)

Print(Tup[1]) # Output: 100

Print(Tup[-2]) # Output: Banana

Display All List elements using loop

Tup=(10,[2,4,6],"KVS",5.8,'A')
for val in Tup:

 print(val, end=”,”)

Output: 10,[2, 4, 6],KVS,5.8,A

Display All List elements using range()

Size=len(Tup)

for index in range(Size):

 print(Tup[index], end=” ”)

Output: 10,[2, 4, 6],KVS,5.8,A

Python also allows a form of indexing syntax that extracts

sub tuple from a Tuple, known as Tuple slicing.

Format of Tuple slicing:

Tuple_Variable [Start Index: End Index: Step Value]
Where start, end index and step value separated with
colon (:)
Start index is by default Zero (0)
End Index is by default end of Tuple.
Step Value is by default 1

Note:

1. Start index always include in result

2. End index (if given) always exclude in result

3. End index (if not given) then last index of Tuple
include

Get the elements from position 2 to position 5 (not

included):

T=(100,200,300,400,500,600)
print(T[2:5])

Output:
(300, 400, 500)

Use negative indexes to start the slice from the end of the

Tuple:

Get the elements from position 5 to position 1, starting the

count from the end of the Tuple:

Tup=(100,200,300,400,500,600)

print(Tup[-5:-2])
(200, 300, 400)

print(Tup[2:8:2]) (300, 500)

print(Tup[2:8:-1]) ()

print(Tup[::2]) (100, 300, 500)

print(Tup[5:0:-1]) (600, 500, 400, 300, 200)

print(Tup[10:0:-2]) (600, 400, 200)

print(Tup[::-1]) (600, 500, 400, 300, 200, 100)

print(Tup[::-2]) (600, 400, 200)

A Tuple in Python can be reversed by using following

ways.

1. By using Traversing (Negative index Traversing)

2. By using loop

Tup=(100,”KVS”,20.5,’A’,500)

print(Tup[-1::-1])

Output: (500, 'A', 20.5, 'KVS', 100)

By Using Loop:

 Tup=(100,”KVS”,20.5,’A’,500)

 size=len(Tup)

 size=Size-1

 While (size>=0):

 print(Tup[size], end=””)

 size=size-1

Output: 500, 'A', 20.5, 'KVS', 100

Concatenating Tuple mean joining two or more strings

with the help of + operator and make a new Tuple.

Example:

t1=(1,2,3)

t2=("Jaipur","Ajmer")

t3=t1+t2 print(t3)

Output: (1, 2, 3, 'Jaipur', 'Ajmer')

t3=t1+(300,)

Print(t3) # Output: (1, 2, 3, 300)

t3=(100,200)+("abc","xyz")

Print(t3)

Output: (100, 200, 'abc', 'xyz')

t3=t1+300 Print(t3)

Output: TypeError: can only concatenate tuple (not "int")

to tuple

The replicating operator * is used to repeating multiple

times of a Tuple to create multiple copies of given Tuple.

Example:

T=(100,200)

Print(T*3)

Output: (100, 200, 100, 200, 100, 200)

T = 2 * ("Jaipur","Ajmer")

Print(T)

Output: ('Jaipur', 'Ajmer', 'Jaipur', 'Ajmer')

Membership operator is Boolean type operator. It used to

check whether a sub Tuple is present in main Tuple or

not.. There are two membership operators are used in

Tuple.

1. in operator: If sub Tuple is present in main Tuple

then it will return True otherwise it will return False

result.

2. not in operator: If sub Tuple is not present in main

Tuple then it will return True otherwise it will return

False result.

Example:

T=(100, 200, 100, 200, 100, 200)

B=200 in T

Print(B) # Output: True

Print(300 in T) # Output: False

Print([100,200] in T) # Output: False

Print(300 not in T) # Output: True

Print(100 not in T) # Output: False

The relational operators of Python can also apply on

strings also. The relational operators are also the Boolean

operators and produce either True or False result.

Tuple comparison is different from numeric values

comparison. Python compares the Tuple using their ASCII

(American Standard Code for Information Interchange).

Python compares the ASCII values of first letter of each

Tuple, if they are equal then next elements of Tuple

compare and so on, until it finds differ ASCII Values.

Letter ASCII Value

A 65

B 66

Z 90

a 97

a 98

z 122

Example:

T1=(100,200,300)

T2=(100,200,300)

Print(T1 ==T2) Output: True

Print(T1 < T2) Output: False

Print(T1 >=T2) Output: True

Print(T1 > T2) Output: False

Print(T1 != T2) Output: False

In Python by

ord(‘element’) function, the

ASCII value of any element

can be find. Similarly

chr(ASCII Value) can used to

find Character of given ASCII

value.

Tuple are immutable in nature in Python. Its mean the

content of Tuple cannot be changed once it is created. In

other words, the assignment operator does not work to

change the content of Tuple.

Example:

t=(100,200,300)

t[1]=500

Output: TypeError: 'tuple' object does not support item

assignment

Tuple is immutable in Python so it do not support

methods such as append(), extend(), insert(), remove()

and pop().

Note: All Tuple methods returns new values. They do not

change the original Tuple.

1. len():

The len() function returns the length of a Tuple or

number of elements available in tuple:

Syntax:

len(Tuple_variable)

Example:

T=(10,”KVS”,[2,3,4],100)

print(len(T))

Output: 4

2. count():

The count() used to return the count of element

repeated in tuple. That mean it finds that how many

times an element occurs in tuple. This function

requires single parameter as element that to be

counted in tuple.

Syntax:

 tuple_variable.count(Element)

Example:

T=(10,20,30,10,30,10)
Print(T.count(10))
Output: 3
Print(T.count(100))
Output: 0

3. index():

This function Searches in the Tuple for a specified
value and returns the index of first occurrence where
it was found. If element or index not found in tuple
then generate

“ValueError: tuple.index(x): x not in tuple”
Syntax:

Tuple_variable.index(element, occurrence
number)
By default occurrence number will be 1.
If occurrence provided as 0 then output will be 0.
Example:

T=(10,20,30,10,30,10)
x = T.index(10)
print(x)
Output: 0
Print(T.index(10,2)) Output: 3
Print(T.index(10,3)) Output: 5

4. sorted():

The sorted() function sort the elements of tuple and

return a list after sorting.

Syntax:

 sorted(Tuple_variable)

 Example:

 Tup=(10,40,20,5,25,35,23,5,2)

 S=Sorted(Tup)

 Print(S)

Output: [2, 5, 5, 10, 20, 23, 25, 35, 40]

5. any():

This function returns Boolean value. If tuple is empty

then it will return False and if tuple contains at least

1 element then it will return True result.

Syntax:

 any(Tuple_variable)

Example:

 T=()

Print(any(T)) Output: False

tup=(10,)

Print(any(tup)) Output: True

Tup=(10,20,30)

Print(any(Tup)) Output: True

6. max()

This function will return maximum value from the tuple.

Syntax:

 max(tuple _Variable) OR max(tuple [range])

Example:

 tup=(10,40,20,15,26,38)

 Print(max(tup)) # Output:40

Print(max(tup[2:5])) # Output:26

T=("KVS","JJN","JPR")

Print(max(T)) # Output:’KVS’

7. min()

This function will return maximum value from the

tuple.

Syntax:

 min(tuple _Variable) OR min(tuple [range])

Example:

 tup=(10,40,20,15,26,38)

 Print(min(tup)) # Output:10

Print(min(tup[2:5])) # Output:15

T=("KVS","JJN","JPR")

Print(min(T)) # Output:’JJN’

1. del keyword

The del keyword is used to delete any variable / object

in Python from memory.

When we provide a tuple variable without range then

del keyword will delete the complete tuple variable from

memory and it will not further allowed to use.

(Deletion / Updation of particular element or range

of elements are not allowed in tuple)

Syntax:

del tuple _variable

Example:

Tup=[10,30,20,50,40]

del Tup[2]

TypeError: 'tuple' object does not support item deletion

del Tup[1:3]

TypeError: 'tuple' object does not support item deletion

del Tup

It will remove tuple variable from memory

print(tup)

NameError: name 'Tup' is not defined

 Tuple can’t support to add element because of its

immutable property.

 There is no append(), extend(), insert() methods for

tuple.

 Tuple has no remove(), pop() and clear() method due

to its immutable property.

Assignments:

1. Write a program to find reverse of List.

2. WAP to find Odd number in List.

3. WAP to find Even number in List.

4. WAP to find Sum of odd index elements in List.

5. WAP to find Sum of even index elements in List.

6. WAP to find maximum number in List.

7. WAP to find minimum number in List.

8. WAP to print elements in ascending order.

9. WAP to print elements in descending order.

10. Explain with suitable Python coding examples that

tuple is immutable in nature.

