
HANDLINGChopter5: FILE

wORKING WITH BINARY FILES
209 5.6 Tvou have learnt to write lines/strings and lists on files. Sometimes you may need to

and read non-simple objects like dictionaries, tuples, lists or nested lists and so forth on to the

ts have some structure or hierarchy associated, it is important that they are

iles. Since objects

stored in
Serialized and then stored in binary files.

Serialisation (also called Pickling) is the process of converting Python object hierarchy
into a byte stream so that it can be written into a file. Pickling converts an object in byte
stream in such a way that it can be reconstructed in original form when unpickled or

stored
files.

in way so that their structure/hierarchy is maintained. For this
It 1s

purpose,
important

objects
that

are

they
often

de-serialised.

Unpickling is the inverse of Pickling where a byte stream is converted into an object hierarchy. Unpickling produces the exact replica of the original object.
Python provides the pickle module to achieve this. As per Pvthon's documentation, "The pickle module implementsa

PICKLING & UNPICKLING
"Pickling" is the process whereby
a Python object hierarchy is
converted into a byte-stream,
and "unpickling" is the inverse
operation, whereby a byte-
stream is converted back into an

fundamental, but powerful algorithm for serializing8 and de-serializing a Python object structure." In this section, you shall learn to use pickle module for reading/writing objects in
binary files.

object hierarchy. In order to work with the pickle module, you must first import it
in your program using import statement

import pickle
And then, you may use dump() and load() methods *of pickle module to write and read from an
open binary file respectively. Process of working with binary files is similar to as you have been
doing so far with a little difference that you work with pickle module in binary files, i.e.,

) Import pickle module.
() Open binary file in the required file mode (read mode or write mode).

(in) Process binary file by writing/reading objects using pickle module's methods.

(iv) Once done, close the file.

5.6.1 Creating/Opening/Closing Binary Files

FOllowing sub-sections are going to make it clear.

ary file is opened in the same way as you open any other file (as explained in section 5.3

earlier), but make sure to use "b" with file modes to open a file in binary mode eg,

Df1le=open("stu.dat", "wb+")- Binary file opened in write mode uwith file handle as Dfile

Or
idteNotice b' is used with the file modes

Llel open("stu.dat", "rb")
Binary file opened in read mode with file handle as File 1

om while tunctions dumps() and loads() of pickle module but these serialise/de-serialise objects in string

a ump) functlone in this chapter.

Thete at
dump() serialise objects for an open binary file. But as per sylabus, we shall only cover only load()

COMPUTER SCIENCE WITH PY THON -210

Like text files, a binary file will get created when opened in an output file moda

exist already. That is, for the file modes, "u', "w t", "t', the file will

not exist already but if the file exists already, thern the file modes "w and "w-

the file and the file mode "a" will retain the contents of the file.

nd it does no get crea
will overwite

An open binary file is closed in the same manner as you close any other file, ie

Dfile.close ()
as

Let us now learn to work with pickle module's methods to write/read into binan. cs

(a
file

files.
it you are opening a binary file in the read mode, then the file must exist otherwise an exception

un time error) is raised. Also, in an existing file, when the last record is reached and end of

(EOF) is reached, if not handled properly, it may raise EOFError exception. Thus it is important to

handle exceptions while opening a file for reading. For this purpose, it is advised to open a file in

read mode either in try and except blocks or using with statement.
in

We shall talk about both these methods (reading inside try. except blocks and using wi
statement) when we talk about reading from binary files in section 5.6.3. with

5.6.2 Writing onto a Binary File - Pickling
In order to write an object on to a binary file opened in the write mode, you should use dumpl function of pickle module as per the following syntax

pickle.dump(<object-to-be-written> , <file handle-of-open-file>)
For instance, if you have a file open in handle file1 and you want to write a list namely listl in the file, then you may write

pickle.dump(1ist1, file1) Object list1 is being written on file opened with file handle as Flel

In the same way, you may write dictionaries, tuples or any other NOTE Python object in binary file using dump() function.
For instance, to write a dictionary namely studentl in a file with open in handle file2, you may write

Python allows you to pickle objet
with the following data types
Booleans, Integers, Floats, Compla

numbers, Strings, Tuples, Lists, Ses

Dictionaries containing pickabe
elements, and classes' objectse

pickle.dump (student1, file2)+
Object student1 is being written on file opened with file handle as File2

Now consider some example programs given below.
some

Write a program to a binary file called emp.dat and write into it the employee aet employees, available in the form of dictionaries.

5.8

rogram import pickle
dictionary objectts to be stored in the binary file emp1 {'Empno: 1201, 'Name': 'Anushree', 'Age': 25, 'Salary : 4/ emp2 {'Empno: 1211, 'Name ' : 'Zoya', 'Age': 30, 'Salary' : 4800 emp3 {'Empno: 1251, 'Name': 'Simarjeet", 'Age': 27, 'Salary *

emp4 { 'Empno: 1266, 'Name' : 'Alex', 'Age' : 29, 'salary' 5000O

7000}

}

Cmapter 5: FILE HANDLUNG

211
open file in write mode

empfile = open("Emp.dat', 'b')
#write onto the file

pickle.dump (emp1, empfile)
pickle.dump(emp2, empfile)
pickle.dump (emp3, empfile)
pickle.dump (emp4, enmpfile)

print ("Successfully written four dictionaries")

Drccisnar; orjgrss being wrier on e ogpreá
nth file hardle a empfile

empfile.close() close file
The above program will create a file namely Emp.dat in your program's folder and if you try to
open the created file with an editor such as Notepad, it will show you some garbled values (as

shown below) because binary files are not in human readable form

leie Fgm Ken besip

(Emprogy Niameg Anushreeq Ageak salarya-u.a AEngncak meg K eA.
Binery fie wen opered in an editor, shows

you some abied vaiues because birary
fis are not in human reatabie fom

Write a program to get student data (roll no., name and marks) from user and write onto a binary file

The program should be able to get data from the user and write onto the file as long as the user wants. 5.9

Irogram

import pickle

stu {}
stufile = open('Stu.dat', 'o)

declare empty dictionary

open file

get data to write onto the file

ans 'y'
while ans == 'y' :

rno= int (input ("Enter roll number: "))

name = input ("Enter name: ")

arks- float (input (°Enter marks: "))

add read data into dictionary

Output

stuf 'Rollno'] = rno

stu['Name'] = name

Enter ro11 number: 11

Enter name Sia

Enter marks : 83.5

want to enter more
records? (y/n).. -y

stu['Marks'] = marks Enter ro11 number : 12

Enter name Guneet

Enter marks 80.5

want to enter more
records? (y/n)...y

non write into the file

pickle.dump(stu, stufile)

ans input("Mant to enter more records? (y/n)...

stufile.close()
Enter roll

number: 13

Enter name James

Enter marks 81

want to enter more
records?

(y/n)...n

close file

The sample run of above
program is as shown here. These 3 student

records are

wrinen o the file stu dat

212 COMPUTER SCIENCE WITH PYTHON.

5.6.2A Appending Records in Binary Files

Appending records in binary files is similar to writing, only
thing you have to ensure is that you must open the file in
append mode (i.e., "ab'"). A file opened in append mode will
retain the previous records and append the new records

written in the file. Just as you normally write in a binary file,

you write records while appending using the same dump()

function of the pickle module.

NOTE

To append records in a binary file, make sure to open the file in append mode ("ab" or "abe"

5.10 Write a program to append student records to file created in previous program, by getting data fiom
user.

rogram
import pickle
declare empty dictionary
stu {}
#open file in append mode

stufile = open('Stu.dat', 'ab') +

#get data to write onto the file

ans 'y"

For appending the records, the file is opened in
append mode. Rest of the program is similar to
that of writing records.

while ans == 'y':

rno int(input("Eter roll number: "))
name input("Enter name")

marks float (input ("Enter marks: "))
add read data into dictionary

stu['Rollno'] = rno

stu['Name'] = name
stu['Marks'] = marks

now write into the file

pickle.dump (stu, stufile)
ans input("Want to append more records? (y/n)... ")

close file

stufile.close ()
The sample run of the above program is as shown below:

Enter ro11 number : 14
Enter name : Ali

Enter marks 80.5
want to append more records? (y/n)...n

more student record is appended to the file stu.aa"

5.6.3 Reading from a Binary File - Un Pickling

Once you have written onto a file using pickle module's dump() (as we did in the previoud
section), you need to read from the file using load() function of the pickle module as it w

then unpickle the data coming from the file.

last

Chapter 5: FILE HANDLING

213
The loadO function is used as per the following syntax

<object> = pickle. load (<filehandle>)
For instance, to read an object in nemp from a file open in file-handle fout, you would write:

nemp pickle. load (fout)+- Read from the file opened with file handle as fout and store
the read data in an object namely nemp

Following program 5.11 does the same for you. It reads the objects written by program 5.8 from the
file Emp.dat and displays them. But before the program 5.11, read the following box. (Important)

But before you move onto the program code, it is important to know that pickle.load() function

would raise EOFError (a run time exception) when you reach end-of-file while reading from the file.

You can handle this by following one of the below given two methods.

Use try and except blocks Using with statement

) Use try and except blocks

Thus, you must write pickle.load() enclosed in try and except statements as shown below. The try
and except statements together, can handle runtime exceptions. In the try block, i.e., between the try

and except keywords, you write the code that can generate an exception and in the except block, ie.,
below the except keyword, you write what to do when the exception (EOF - end of file in our case)

has occurred. (See below)

filehandle = open (<filename>, <readmode)

try: In the try block, write the pickle.load()
statement and other processing statements.
In order to read all the records, read inside a
loop as shown in the following program.

<object» = pickle. load (<filehandle>)
other processing statements

Use this keyword with except keyword

for checking EOF (end of file) except EOFError:
In the except block, uwrite code for what to

do when EOF exception has occurredfilehandle>.close()

Here, you just need to just concentrate on the syntax; you need not go in further details of try and

except as it is beyond the scope of the book.

i) Using with statement
he with statement is a compact statement which combines the opening of file and processing of file

along with inbuilt exception handling. (Refer to Info box 5.3 given earlier where we have talked about

the with statement.) The with statement will also close the file automatically after with block is over.

You can use the with statement as

with open(<filename>, <mode>) as file handle>:

#use pickle.load here in this with block

#perform other file manipulation task in this with block

ease note that while writing onto file, the exceptions like "File does not exist" or the EOF error do

se as most write modes create the file if it does not exist already and you can write onto them as

g as you want, i.e., there is no restricting EOF marker for writing.

Ouce that you need not mention any exception with the with statement, explicitly.

COMPUTER SCIENCE WITH PYTHO
- K

214

In the program below, we have used both the try..except block (in programs 5.11 and

ne with statement (in programs 5.13 and 5.14) for working with the files. No

followingR program that is reading from the file you created in the previous

d 5.12) and
Now co sider the us program

Write a prmgram to open the file Emp.dat (created in program S.8). read the objects writean

display them.
5.11

ane

Iragram import pickle
#dec lare empty dictionary object; it will hold the read record

emp {}
open binary file in read mode empfile = open(Emp.dat', 'rb')

#read from the file

Read repeatedBy; when no more records, it will give EOF
and take you to except block where file is closed.

try:

ion. while True: #it will become False when the end of file is reached (EOF exception

emp pickle.load (empfile) This statement would unpickle the obfect being reud from i
print (empP)

You can now use the object in ustual ay feg., we printed

its contents) except EOFError:

empfile.close() #close file

The statements in this block will get executed when EOF has
occurred, i.e., the file will be closed on reaching EOF

The output produced by the above program will be

'Empno': 1201, 'Name': 'Anushree', 'Age': 25, 'salary': 47000}
Empno': 1211, 'Name' 'Zoya', 'Age': 30, 'salary': 48000}
'Empno': 1251, 'Name': 'Simarjeet', 'Age': 27, 'salary': 49000}
Empno': 1266, 'Name': 'Alex', 'Age": 29, 'salary': 50000}

It is returming the same dass

as we wrote in the previoe

program (Compare with e

data of the previous pragno

Now that you have an idea of how to read and write in binary files, let us write a few more

programs before we talk about searching in and updating the binary files.

5.12 Write a program to open file created and used in programs 5.9 and 5.10 and display the sa stueer
records stored in it.

rogram
import pickle
stu {} declare empty dictionary object to hold read reco

open binary file in read mode fin open('Stu.dat', 'rb')
#read from the file

try

print("File Stu.dat stores these records")
while True #it will become Fal se upon EOF

file handle stu pickle. load(fin) * read record in stu dictionary from tln* print (stu) #print the read record
except EOF Error:

fin.close() # close file

Chapter 5: FILE HANDLING 215

The output produced by above program will be:

File Stu.dat stores these records

Rol1no': 11, 'Name': 'sia', Marks' 83.5}

'Rolno': 12, "Name Guneet', 'Marks': 80.5}
'Rollno': 13, "Name""James', "Marks': 81.0}
(RO11no: 14, "Name": "Ali', 'Marks': 80.5} See, the appended record is also here

5.13 Create a binary file namely myfile.info and write a string having two lines in it.

import pickle
string = "This is my first line. This is second line."

irogram

with open ("myfile.info", "wb") as fh:
File myfile.info is opened in file handle fh

pickle.dump(string, fh) All file processing statements inside the with block.

print("File successfully created. ")

The above program has created binary file namely myfile.info that stored the given string in the

binary format.

5.14 Write a program to read from the file myfile.info created in previous program and display the string

until letter 'o' is encountered, i.e., display all the text before the letter 'o'.

rogram
import pickle
St=""

with open("myfile.info", "rb") as fh
st pickle.load(fh)

lst st.split ('o')
print(1st[0])

All file processing statements inside the with block.

The output produced by above program is as shown below:

This is my first line. This is sec
See, the text before the letter 'o' is displayed

5.6.4 Searching in a File

There are multiple ways of searching for a value stored in a file. The simplest being the

sequential search whereby you read the records froma file one by one and then look for the

search key in the read record. We are covering the same method here. That is, in order to search

for some value(s) in a file, you need to do the following

(Please note that objects read from the file are being referred to as records in this chapter.)

1. Open the file in read mode.

2. Read the file contents record by record (i.e., object by object).

3. In every read record, look for the desired search-key.

4. If found, process as desired.

5. If not found, read the next record and look for the desired search-key.

6. If search-key is not found in any of the records, report that no such value found in the file.

216 COMPUTER SCIENCE WITH PYTHON

Following program is just doing the same. It is using a Boolean variable namely found.

False initially and stores True, as soon as the search is successful. In th

tested for its value and accordingly the message is reported.

at s the end, this variable is

5.15 Write a program to open file Stu.dat and search for records with roll numbers as 12 or 14, If fau

display the records. und,
rogram

import pickle
stu {} # declare empty dictionary object to hold read records
found False
fin = open('Stu.dat', 'rb')
searchkeys [12, 14]

#open binary file in read mode

#list contains key values to be searched for

read from the file

try:
print("Searching in File Stu.dat... ")
while True: #it will become Fal se upon EOF exception

stu pickle.load (fin) #read record in stu dictionary from fin file handle

if stu['Rollno'] in searchkeys Searching for in the read record

print (stu) #print the record
found True

This block will get executed when the search is successful.
except EOFError:

if found == False

print("No such records found in the file")

else:
Searching in File Stu.dat ..

print("Search successful. ")

fin.close(
'Rollno ': 12, 'Name' 'Guneet', 'Marks': 80.5}
('Ro11no': 14, 'Name' 'A1i', 'Marks': 80.5} # close file

Search successful.

5.16 Read file stu.dat created in earlier programs and display records having marks> 81.

rogram import pickle
stu = {} # declare empty dictionary object to hold read records

found False

print("Searching in file Stu.dat...")
open binary file in read mode and process with the with block
with open('Stu.dat', 'rb') as fin

stu = pickle. load (fin)
if stu['Marks']> 81

print (stu)

#read record in stu dictionary from fin file handle

print the read record
found True

if found == False :

print("No records with Marks > 81")
else

Searchi ng in file Stu.dat for Marks> 81*
t'Rollno': 11, 'Name' 'sia', 'Marks': 83.
Search successfu1. print("Search successful.")

Chapter 5: FLE HANDLING

217

5.6.5 Updating in a Binary File

Vou know that updating an object means changing its value(s) and storing it again. Updating records in a file 1s similar and is a three-step process, which is
Locate the record to be updated by searching for it
() Make changes in the loaded record in memory (the read record) i Write back onto the file at the exact location of old record.

You can easily pertorm the first two steps by whatever you have learnt so far. But for the third step, you need to know the location of the record in the file and then ensuring that the record

being written is written at the exact location. Thus, we shall first talk about in the following sub-section how you can obtain the location of a record and how you can place the file pointer
on a specific location (requirements of updating in a file).

Accessing and Manipulating Location of File Pointer Random Access

Python provides two functions that help you manipulate the position of file-pointer and thus
you can read and write from desired position in the file. The two file-pointer location functions

of Python are: tell() and seek(). These functions work identically with the text files as well as
the binary files.

5.6.5A

The tell() Function

The tell() function returns the current position of file pointer in the file. It is used as per the

following syntax:

<file-object>.tell()

where file-object is the handle of the open file, eg., if

the file is opened with handle fin, then fin.tell() will

give you the position of file pointer in the file

opened with the handle fin.

File Edit Format View Help

12,Hazel, 67 .75

15,Jiya, 78.5
16, Noor, 68.9
17, Akshar, 78.9

23,Jivin, 89.5
Consider some examples, given below. We are usin8

the same file "Marks.txt" (shown on the right) that

we created in earlier examples.

Now consider the following code snippet: To get current position of file pointer

fh open("Marks.txt", "r")

print("Initially file-pointer's position is at : ", fh.tel1())*

print ("3 bytes read are:", fh.read(3))

print ("After previous read, Current position of file-pointer: ", fh.tell ())
3 bytes read

The output produced by the above code will be :

Initially file-pointer is at Oth byte

Initially file-pointer's position is at: 0.

Notice first 3 bytes of the file contain 1, 2 and a comma

3 bytes read are : 12,

ATter previous read, current position of file-pointer: 3,
Afier reading 3 bytes

file-pointer's position is 3.

COMPUTER SCIENCE WITH PYTHON- 218

Now consider the following modified code

fh open("Marks.txt", "r")
print (3 bytes read are:", fh.read(3))
print ("After previous read, Current position of file-pointer :", fh.tell0)

print ("Next 5 bytes read:", fh.read(5))
print ("After previous read, Current position of file-pointer : ", fh.tell())

The output produced by above code will be :

3 bytes read are: 12,
Retumed by first fh.tell(After prevíous read, Current positíon of file-pointer: 3

Next 5 bytes read: Haze
After previous read, current positíon of file-pointer: 8 -

Retumed by second fh.tell)

NOTE The seek() Function

The seek) function changes the position of the file-pointer by

placing the file-pointer at the specified position in the open file.

The cfile-object>.tell) function
returns the current position of

file pointer in an open file.

And the <file-object.seekl
function places the file pointer

at the specified by in an open

The syntax for using this functíon is:

<file-object>.seek(offset[, mode])
where file.

offset is a number specifying number-of-bytes

mode is a number 0 or 1 or 2 signifying

0 for beginning of file (to move file-pointer w.r.t beginning of file) it is default position
(i.e., whenm no mode is specified)

1 for current posítion of file-pointer (to move file-pointer w.r.t current position of it)

2 for end of file (to move file-pointer w.r.t end of file)

file object is the handle of open file.

with The seek() functíon changes the file pointers position to a new file position = start + ofset w

respect to the start position as specified by the mode specified.

Consider the following examples:
fh open("Marks.txt", "*) will place the file pointer at 30th byte from the beginning

of the file (defaulsy

fh.seek(30) * wil place the file pointer at 30th byte ahead of
current file-pointer position imode = 1)

fh.seek(30, 1) will place file pointer at 30 bytes behind tbackhvard
directumi from end-of file tmode = 2)

fh.seek(-30, 2) 4

fh.seek(30, 0) 4
will place the file pointer at 30th byte from the begin-
ning of the file (mode = 0j

fh.seek (-5, 1) 4 will plase file pointer at 5 bytes behind backuward direction)
Jrom current file-pointer position (ode = 1)

Chapre
5: FlLE HANDLING

with the above examples, it is clear that you can move the file-pointer in forward direction

ith positive value for bytes) as well as the backward direction (by giving negative value for

219

bytes).
However, one thing that you should bear in mind is that:

Backward movement of file-pointer is not possible from
the beginning of the file (BOF).

Forward movement of file-pointer is not possible from
the end of file (EOF).

Now consider some examples based on the above-discussed

file pointer location functions.

NOTE
You can move the file-pointer in
forward direction (positive value

for bytes) as well as tie

backward direction (by giving

negative value for bytes)

Code Snippet 1 Check the position of file pointer after read) function

fh open("Marks.txt", "r")

print(fh.read())
print("File-pointer is now at byte ", fh.tell())

The output produced by above code is:

12,Hazel,67.75

15,Jiya,78.5
16, NOor, 68.9

17,Akshar, 78.9

23,Jivin, 89.5
File-pointer is now at byte : 75

This value is returned by fh.tell()

As you can make out that file has 74 characters including '\n' at the end of every line and thus

after reading the entire file, the file-pointer is at the end-of file and thus showing 75.

Code Snippet 12 Read the last 15 bytes of the file "Marks.txt"

fh open("Marks.txt", "r")

fh.seek(-15, 2)
str1 fh.read(15)

Place the file pointer 15 bytes before the end of

file (thus mode = 2)

print("Last 15 bytes of file contain:", str1)

The output produced by above code is:

NOTE

Last 15 bytes of file contain : 23,Jiv in, 89.5

Armed with the knowledge of file-pointer location
functions,Functions seek) and tell) work

you can now easily update a file. Following
sub-section will

explain this,

identically in text and binary files.

.6.5B Updating Record(s) in a File

Let us recall the three-step updation process
mentioned earlier, which is

() Locate the record to be updated by searching for it.

(1) Make changes in the loaded record in memory (the read record).

(11) Write back onto the file at the exact location of old record.

220
COMPUTER SCIENCE WITH PYTHON. - A To determine the exact location, the enhanced version of the updation process would be. () Open file in read as well as write mode. (Important) (i) Locate the record

(a) Firstly store the position of file pointer (say rpos) before reading a record (b) Read record from the file and search the key in it through appropriate test condition (c) If found, your desired record's start position is available in rpos (stored in step a ii) Make changes in the record by changing its values in memory, as desired. (iv) Write back onto the file at the exact location of old record. (a) Place the file pointer at the stored record position (the exact location) using seek(i.e., at rpos, which was stored in step a (the exact location of the record being updatedi (b) Write the modified record now. The previous step is important and necessary as any operation read or write takes place at the current file pointer's position. So the file pointer must be at the beginning of the record to be over-written.

ion.

Following example program illustrates this process.
5.17(a) Consider the binary file Stu.dat storing student details, which you created in earlier programs. Write a program to update the records of the file Stu.dat so that those who have scored more than 81.0, get additional bonus marks of 2. rogram

Note. Important statements have been highlighted.
import pickle
stu = {} # declare empty dictionary object to hold read records found False
#open binary file in read and write mode
fin = open('Stu.dat', 'rb+") It is important to open the file in read

as well as write mode ; hence rb+ # read from the file

Before reading any record, firstly store its beginning position its exact position

try:
while True

#store file-pointer position before reading the recora
rpos fin.tell()
stu = pickle. load (fin)

Locating the desired record through search condition if stu['Marks'] > 81:

placing the
file-pointer at
the exact

stu['Marks']+ 2
fin.seek(rpos)

changes made in the record; 2 bonus marks added
place the file-pointer at the exact location of the record location of the

record you
stored earlier

pickle.dump(stu, fin) # now write the updated record on the exact locatio
After placing the file-pointer at the exact location,
now write the updated record

found True
except EOFError

if found == False :

print("Sorry, no matching record found. ") else:

print("Record(s) successfully updated. ") fin.close() # close file

LING
Chapter

5 :
FILE HANDLIN

The
changes in it and write back into the file,

221
ahove program will look for the desired matching record (with marks> 81) and make the

It will show you a message

Record(s) successfully updated.

Eallowing program reads the modified file and displays its records. You can see yourself if the record is modified.

5.17(b) Display the records of file Stu.dat, which you modified in of progran 5.17(a).

rogram import pickle

stu {} #declare empty dictionary object to hold read records

#open binary file in read mode

fin open('Stu.dat', 'rb')
read from the file

try:
print("File Stu.dat stores these records")

while True:
stu = pickle. load(fin) #read record in stu dictionary from fin

#print the read record
print(stu)

except EOFError:

fin.close()
close file

The output produced by above program is:

File Stu.dat stores these records
See, the matching record's marks have been

modified (compare with the output of

program 5.12) 'Rollno': 11, 'Name' 'sia', 'Marks': 85.5}

'Rol1no': 12, 'Name': 'Guneet', 'Marks': 80.5}

RolTno': 13, 'Name' 'James'.

t'ROllno': 14, 'Name': 'Ali', 'Marks': 80.5}

Marks' 81.0}

YOu can also place the file pointer
backwards using negative values in bytes BUT for that you

need to get the size of record (i.e., the object stored in the file) in bytes. Getting the size of a

record in bytes is not straight forward in Python. For that you need to import a different module

8sys or cpickle etc.). Covering these modules here is beyond the scope of the book and thus

we advise you to use the method covered above.

OWrite a program to modify the name of rollno 12 as Gurnam in file Stu.dat (created in earlier

programs)

rogram
import pickle

stu {}
declare empty

dictionary
object to hold read

records

n s open("Stu.dat', 'rb+') #open binary
file in read and write mode

read from the file

found False

COMPUTER SCIENCE WITH PYTHON 222 -

try:
while True:

rpos fin. tell()
stu = pickle. load (fin)

it will become False upon EOF exception

store file -pointer position before reading the recod
#read record in stu dictionary from fin file han.

ndle
#locate matching record if stu['Rollno'] == 12

stu['Name'] = "Gurnam

fin.seek(rpos)
#changes made in the record

#place the file-pointer at the exact location of the record

pickle.dump (stu, fin)
found True

except EOFError:

if found -- False:

print("Sorry, no matching record found. ")

else:

print("Record (s) successfully updated. ")

fin.close() # close file

If run the code of program 5.17(6) to display the contents of modified file, it will show you the

contents as:
File Stu.dat stores these records
{'Rol]no': 11, 'Name': 'sia', "tarks': 87.5}

See, the name of record with Rollno 12 is modified
Compare with the output of previous program. {'Rollno': 12, 'Name': ' Gurnam', Marks': 80.5}

{'Rolno': 13, 'Name': 'James', Marks': 81.0}

'Rol1no': 14, 'Name": 'Ali', 'Marks': 80.5}

While modifying a binary file, make sure that the data types do not get changed for the value being
modified. For example, if you modify an integer field as value +value *0.25; then the result may be

afoating point mumber. Such a change may affect pickling and unpickling process and sometimes

it leads to the Unpickling Error. Thus, make sure that modification of file data does not change the

data type of the value being modified.

If you sill need to have such modification then you can do it in a different way

(create a new file

(i) write records into the new file until the record to be modified is reached;

(i) modify the record in memory and write the modified record in the new file;

(iv) Once done. Delete the old file and rename the new file with the old name.

Deleting and renaming of files can be done through the os module's remove() and rename
functions as os.removef<filename) and os.rename(cold filename, <new filename

(Make sure to import the os module before using its functions).

Following exceptions may arise while working with the pickle module.

pickle.PicklingError Raised when an unpicklable object is encountered while writing

pickle.UnpicklingError Raised during unpickling of an object, if there is any problem
as data corruption, access violation, etc).

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

