o0 5 ¢ FILE HANDLING
(hoP

; WORKING WITH BINARY Fis

5
£
i
£
i
L
;

[-
Y write and read non-simple objects like diction
1 files. Since objects have some stry

<
wn
[1°]
.}
»
e
[
»n
1]
-
[
Q
=
—
s}
et
[72]
o
@)
o
—_
®
Q.
=
2]

Python provides the pickle moduye to achieve this, Ag per
e ————

/ .

s docu " ; .

Python] mentation, “The pickle module implements g “Pickling” is the process whereby

fundament'a, but powerful algorithm for serializing and a Python object hierarchy is

de-serializing a Python object structure.” In thig section, you shall ~ onverted into a byte-stream,
i . o and “unpickling” is the i

learn to use pickle module for reading/writing objects in operatim"’ “:‘:er el-;y ea m\s;rtt

binary files. stream is converted back into an
object hierarchy.

In order to work with the pickle module, you must first import it
in your program using import statement :

import pickle
And then, you may use dump() and load() methods ! of pickle module to write and read from an

open binary file respectively. Process of working with binary files is similar to as you have been
doing so far with a little difference that you work with pickle module in binary files, i.c.,

(i) Import pickle module.
(i) Open binary file in the required file mode (read mode or write mode).

(iif) Process binary file by writing/reading objects using pickle module’s methods.
(iv) Once done, close the file.
F()l]()wing sub-sections are going to make it clear.
r i = .
2.6, Creoﬁrig/Opening/Closing Binary Files

, Ny on 5.3
A binary file is opened in the same way as you open any other .flle.(as f:xplamedd me section
tarlier), but make sure to use “b” with file modes to open a file in binary mode ¢.g.,

Binary file opened in write mode with file handle as Dfile

OFfile = open("stu.dat", "wb+")e—
v,
N .-':'. $0aen Notice ‘b’ is used with the file modes

*

Binary file opened in read mode with file handle as File!

Filel = open("stu.dat”, "rb") «

1 ' ' T _serialise objects in string
;"*mu- M 1w similar functions dumps() and loads() of pickle module but these segahsvev/edseh;{-‘lf:"nly <over only load()
it s ad() and dump() serialise objects for an open binary file. But as per syllabus,

Rt} s \
‘ ﬂ»suub() Tunetlone in this chapter.

A

COMPUTER SCIENCE wy,, -
ON_,

X
in an t file mog .
: hen Opened n Ou_fpu : €and j;
Like text files, a binary file will get created Yu/’ vw+", “a”, the file will get Createq 1? ‘.)E“\oz ;

exist already. That is, for the file modes, then the file modes “w/” and "z y» o Hit gy |
not exist already but if the file exists al.read}’r rents of the file. Oove N
he fil ‘ d the file mode “a” will retain the con e |
the file an d in the same manner as you close any other file, j as .
osed i

An open binary file is cl

Dfile.close() ‘ ' .
’ e/read int ,
Let us now learn to work with pickle module’s methods to write/ Into blnary files

................................
...............

—— e the file must exist otherwise an exceptig @
| ing a binary file in the read mode, then : G
xltfn{ (Zil;x;aereel(')rl();;u;grajsed rlilso in an existing file, when the last record e re;;heqt@q end of fjj, |
(EOF) is reached, if not handled properly, it may raise EOI."Error exc?:):;o:(.jwsss tolz unrll)onglm Fo L
handle exceptions while opening a file for reading. For this purpose, i pen a file j

read mode either in try and except blocks or using with statement. B

e Ao s i e ol S W » 4
R ot s KAt B R A B R SO o S B ot 9 [

We shall talk about both these methods (reading inS.ide .try - ?xcegz l;locks and using wip t
statement) when we talk about reading from binary files in section 5.6.3. |
§

9.6.2 Writing onto a Binary File — Pickling

In order to write an object on to a binary file opened in the write mode, you should use dump
function of pickle module as per the following syntax : =

pickle.dump(<object-to—be-written>, <file handle-of-open-file>)

For instance, if you have a file open in handle filel and you want to write a list namely list] i ;
the file, then you may write : ?

pickle.dump(listl, filel) +—0o0 0 Object list1 is being written on file opened with file handle o Fie

In the same way, you may write dictionaries, tuples or any other M
Python object in binary file using dump(|

) function. ; e i
. . -y Python allows you to pickle obje
For instance, to write a dictionary namely student1 in a file w‘i':h e follov:ing G |

open in handle file2, you may write : Booleans, Integers, Flosts, Condés

. . : H Sts:seﬁ *
pickle.dump(student1, file2) 4\ g;jc?::;i ::”“cg:;:a‘::::: Upiddsb* |
: ;
’ i eﬁ‘
Object student] is being written on elements, and classes’ object

file opened with file handle g5 File2

Now consider some example programs given below. |

5.8 Write 3 program to a binary fj
employees, available i the for

_rogram import pickle

emp1={:Empno' © 1201, 'Name: . 'Anushree ‘Age’ : 25, 'salary’ : 47000}

::siff'ingz: 1211, 'Name® : 'Zoya"', 'Age’ :30,.'Sa,1ar~y‘ :ZSG.GO}

emp4={'Emppno' ;;:: SImarjeet, ‘Age’ : 27, 'salary’ 2 o0t
‘Age’ : 29, ‘Salary' : 50000}

SN TN

FILE HANDLING

-

gpter 3

g open file inwrite mode
ewflle :open(!Ew.data, ,m'}
#write onto the file

pickle.dump(empl, empfile)
pickle.dump(emp2, empfile)
pickle.dump(emp3, empfile)
pickle.dump(emps, empfile) _

———— L ,r,.-‘},?// %

for Sz Dimary s

——— Diczonars oiecs baing swriten or S ot

print(”"Successfully written four dictionaries”)

empfile.close()

#close file

The above program will create a file namely Emp.dat in your program’s folder and if you try to
open the created file with an editor such as Notepad, it will show vou some garbled values (as
shown below) because binary files are not in human readable form.

_

e Zdr g few e
o (4 Emprogdeid sameq X Anushreegf

5.9 Write a program 0 2€1 student data (roll no., 03
The program should be able to get data Irom he

import pickle

stu={} # declare empty dlctlonary

stufile = open('Stu.dat’, hb)

% get data towrite onto the file

ms = ly]

whileans=="y' : .

rno = int(input("Enter roll number :
name = input(~Enter name - ")
marks = float(input("Enter marks :
add read data into dictionary
stuf ‘Rollno’] =rno

stu["Name '] = name

stul ‘Marks ‘] =marks

now write into the file

"))

pickle.dump(stu, stw? file) > (y/n).--")
ans = input (“Want toeﬂtermre records? (y/0
se File
stufile.close() #clo

The sample run of above
Program is as shown here. These 3

‘z,,,,”, %, the r;,.z foor e

Lgeg Szlerydl -u €z (A

3 sedems records 9TF

dat

e TS

tmprodbll semes A Zoyzall

\a’rer;if—w opered in 2 edior, shows
p.wwmmw«
fies are nof v numan readsoe form

Arc 't Frowm 125

\

il 1S5) IR W

(\\

Qutput
. enter roll number :

11

Enter name : sia

. enter marks © 83.5
' want to emter

more records? (y/n)...¥

enter roll number :

| gnter name @ Guoeet

gnter marks : 80.5 e
want to enter more records? L¥/T

| . 13
Enter roll number - =
gnter name - james

B‘Y
ter marks - ? (yin).-
i:nt rg enter moTE records? LY/

212

COMPUTER SCIENCE WITH PYTHON
~ X

5.6.2A Appending Records in Binary Files
Appending records in binary files is similar to writing, only

thing you have to ensure is that you must open the file in M
appfend mode (1..e., ab”). A file opened in append mode will e
retain the previous records and append the new records file, make sure to open t;e
written in the file. Just as you normally write in a binary file, append mode (“ab* o ”ab”“:h
you write records while appending using the same dump() R R
function of the pickle module.

5.10 write a program to append student records to file created in previous program, by getting dats from

user.
rogram
import pickle
declare empty dictionary
stu={}
open file in append mode
stufile = open(’Stu.dat’, 'ab") ——— For appending the records, the file is opened in
get data towrite onto the file append mode. Rest of the program is similar to
ans="'y" that of writing records.
while ans == "y’ :
rno = int(input("Enter roll number : "))
name = input("Enter name :")
marks = float(input("Enter marks : "))
add read data into dictionary
stu["Rollno’'] =rno
stu['Name'] = name
stu['"Marks'] = marks
now write into the file
pickle.dump(stu, stufile)
ans = input("Want to append more records? (y/n)...")
close file
stufile.close()

The sample run of the above program is as shown below :

Enter roll number : 14
Enter name : Ali
Enter marks : 80.5

T 1 more student record is appended to the file stu.dat
want to append more records? (y/n)...n

5.6.3 Reading from a Binary File — UnPickling

ous 188
Once you have written onto a file using pickle module’s dump() (as we did in the prevfo‘:,i
section), you need to read from the file using load() function of the pickle module a5 itv
then unpickle the data coming from the file.

chopter 5 ¢ FILE HANDLING

o 213
The load() function is used as per the following synt
ax :

<object> = pickle. load(<filehandle>)

instance, t iect 1 .
For o read an object in nemp from a file open in file-handle fout you would writ
’ e:

Read from the file o i
pened with file handle as
the read data in an object namely nemp et aer

Following program 5.11 does the same for
' . you. It reads the objects written by pro 5.8
file Emp.dat and displays them. But before the program 5.11, read the folloxi’ri}:\g g:;l.n(h-n;:;rgnﬂ:)e

nemp = pickle.load(fout) «—

.................................

But 1t:iefo-re);:u move onto the" program code, it is important to know that pickle.load() function
would raise OFError (a run time exception) when you reach end-of-file while reading from the file. :
You can handle this by following one of the below given two methods. :

< Use try and except blocks 4 Using with statement

IMPORTANT

(i) Use try and except blocks

Thus, you must write pickle.load() enclosed in try and except statements as shown below. The try :
and except statements together, can handle runtime exceptions. In the try block, i.e., between the try
and except keywords, you write the code that can generate an exception and in the except block, i.e., '
below the except keyword, you write what to do when the exception (EOF ~ end of file in our case)
has occurred. (See below)

<filehandle> = open (<filename>, <readmode>)

try :
A In the try block, write the pickle.load()
<obiect> = ickle. load <filehandle> statement and other processing statements. 1
J P . () In order to read all the records, read inside a .

Use this keyword with except keyword

4o S
except EOFError : for checking EOF (end of file)
G In the except block, write code for what to

<filehandle>.close() do when EOF exception has occurred.

Here, you just need to just concentraté on the syntax; you need not go in further details of try and

except as it is beyond the scope of the book.

(i) Using with statement
The with statement is a compact stateme
along with inbuilt exception handling. (Refer to Info
the with statement.) The with statement will also close
You can use the with statement as :
with open(<filename>, <mode>) as <file handle>:
use pickle.load here in this with block
perform other file manipulation task in this wi
with statement, explicitly.

“File does not exist” or the EOF error do :
dy and you can write onto them as j

nt which combines the opening of file and processing of file
box 5.3 given earlier where we have talked about
the file automatically after with block is over.

th block

Notice that you need not mention any exception with the

Please note that while writing onto file, the exceptions like
not arise as most write modes create the file if it does not exist alrt.fa'
long as you want, i.e., there is no restricting EOF marker for writing.

................

Vs
i ‘e gt A e e e e Wi ae
Y e e R} e SR E FEA AR U e

!
|
é

COMPUTER SCIENCE wit
214 H PrThoy

t block (in programs 5.11 1
dow We » used both the try.excep .) and 57, .
In the program below, we have m?:;:}a 4.14) for working with the files. Now con)a

the with statement (in programs . . > in the previous
following program that is reading trom the file you created in pre ® Program,

am 5.8), read the nb;wm Wit
LS TIEN

R an
LY

£l -3 ¢ e L vy 2] }(J«ﬁ,
S.11 wiite a program to open the file Emp.dat (created in progrs

spday them

import pickle

#dec lare empty dictionary object; it will hold the read record

emp ={} '
empfile = open('Emp.dat’, 'rb’) # open binary file in read mode
#read from the file

try: ve EO

while True : # it will become False when the end of file is reached (EOF exceptian)
emp = pickle.load(empfile) e——__ i statement would unpickle the object being read from ¢,
print(emp) 4\
You can now use the object in usual way {¢.g., we pringy
except EOFError: its contents)
empfile.close() '\#Close file
The statements in this block will get executed when EOF has
occurred, i.e., the file will be closed on reaching EQF
The output produced by the above program will be :
{'Empno’: 1201, 'Name': 'Anushree', 'Age': 25, ‘salary': 47000} —\
{'"Empno’: 1211, 'Name': 'z?ya' .. '‘Age': 30, 'salary': 48000} It is retuning the same das
{'Empno’: 1251, 'Name': 'Simarjeet', ‘'Age': 27, 'salary': 49000} as we wrote in the previo
{'Empno’: 1266, 'Name': 'Alex', 'Age': 29, ‘salary': 50000} program (Compare with
data of the previous prog
Now that you have an idea of how to read and write in binary files, let us write a few mo®
programs before we talk about searching in and updating the binary files.
5.12 write a program to open file created and used in programs 5.9 and 5.10 and display the
records stored in it '
rogranm
import pickle
_— . 5
Sfu {} ' # declare empty dictionary object to hold read recor
fin=open('Stu.dat’, 'rb') & open binary file in read mode
¥ read from the file
try:
print(“File Sty.dat stores these records")
T :
while True #itwill become False upon EOF e
stu =pickle.load(fin)

read record in sty dictionary from fin fileh

print(stu) # print the read record

except EOFError:

fin.close() # close file

X

lang

ter 5 : FILE HANDLING
Chap 215

The output produced by above program will be :

File Stu.dat stores these records

{'Roﬂno': 11, 'Name': 'sia', 'Marks': 83.5}

S {'Roﬂno': 12, 'Name': 'Guneet', 'Marks': 80.5}

{'Rollno’: 13, 'Name': 'James', 'Marks': 81.0}

{'Ro11no"': 14, "Name': 'Ali', 'Marks': 80.5} —— See. the appended record i alto here

AT

' 5.13 Create a binary file namely myfile.info and write a string having two lines in it.

import pickle
string = "This is my first line. This is second line."

rogram

with open ("myfile.info", "wb") as fh : File myfile.info is opened in file handle fh

pickle.dump(string, fh) -—_
: : ; All file processing statements inside the with block.

print("File successfully created.")

The above program has created binary file namely myfile.info that stored the given string in the
binary format.

5.14 Write a program to read from the file myfile.info created in previous program and display the string
until letter ‘o’ is encountered, i.e., display all the text before the letter ‘o’.

frogram
import pickle
St =ll n
‘with open("myfile.info", "rb") as fh:
st = pickle. load(fh)
158 =58 sPllt(!) \ All file processing statements inside the with block.

print(1st[e])

The output produced by above program is as shown below :

This is my first line. This is seC —— See, the text before the letter ‘0’ is displayed

g
)
o5

5.6.4 Searching in a File

There are multiple ways of searching for a value stored in a file. The simplest being the

sequential search whereby you read the records from a file one by one and then look for the
search key in the read record. We are covering the same method here. That is, in order to search
for some value(s) in a file, you need to do the following :

(Please note that objects read from the file are being referred to as records in this chapter.)

1. Open the file in read mode.

Read the file contents record by record (i.e.,
In every read record, look for the desired search-key.
If found, process as desired.

If not found, read the next record an
If search-key is not found in any of the records,

object by object).

d look for the desired search-key. ‘
report that no such value found in the file.

N WA W N

e o1 COMPUTER SCIENCE WiTH PYTHON

Following program is just doing the same. It is using a Boolean variable namely foung tha
False initially and stores True, as soon as the search is successful. In the end, thig Variabl, |
tested for its value and accordingly the message is reported.

5.15 writea program to open file Stu.dat and search for records with roll numbers as 12 o 14, 1 foung

display the records. '
rogram

import pickle

stu ={} # declare empty dictionary object to hold read records

found = False

fin =open('Stu.dat’, 'rb') # open binary file in read mode

searchkeys = [12, 14] # list contains key values to be searched for

read from the file

try: |
print(“Searching in File Stu.dat ... ")
while True : # it will become False upon EOF exception

stu = pickle.load(fin) # read record in stu dictionary from fin file handle
if stu['Rollno’'] in searchkeys : $—————— Searching for in the read record

print(stu) #print the record

found = True — '
This block will get executed when the search is successful.

except EOFError:
if found == False :
print("No such records found in the file")

else: _ searching in File stu.dat ...
print("“Search successful.") {'Ro11no"': 12, 'Name': 'Guneet', 'Marks': 80.5}

fin.close() # close file - {'RoTTno': 14, 'Name': 'Ali', 'Marks': 80.5}
. Search successful.

5.16 Read file stu.dat created in earlier programs and display records having marks > 81.
r9@M import pickle
stu = {} - #declare empty dictionary object to hold read records
found = False
print(“Searching in file Stu.dat ...")
open binary file in read mode and process with the with block
with open('Stu.dat', 'rb') as fin :
stu = pickle.load(fin) # read record in stu dictionary from fin file handle
if stu['Marks'] > 81 :
print(stu) # print the read record
found = True
if found == False :

print(“No records with Marks > 81") Searching in file stu.dat for Marks >:5t35}
else: {'Ro1Tno': 11, 'Name': 'sia’', 'Marks':
print(“Search successful.") . Search successful.

e

Chapter 5 . FILE HANDLING

217

565 Updating in a Binary File

You know that updating an object means chan

records in a file is similar and is a three-step pr gINg 1ts value(s) and storin

' Ocess, which is :
(i) Locate the record to be updated by searching for it

(i) Make changes in the loaded record in memory (the read record
(iif) Write back onto the file at the exact location of old record o

g it again. Updating

You can easily perform the first two ste
Ps by whatever you have learnt so far. B '

_ . But for the thir
step, you.z\teed. to kx‘\ow the location of the record in the file and then ensuring that Ihe Lr:ulrj
beigezvh}'(l) ne}I:O:i written at tht.e exact loca.tion. Thus, we shall first talk about in the following
sub-s you can obtain the location of a record and how you can place the file pointer

on a specific location (requirements of updating in a file).
56.5A Accessing and Monipulaﬁng Location of File Pointer — Random Access

Python provides twq functions that help you manipulate the position of file-pointer and thus
you can read and write from desired position in the file. The two file-pointer location functions

of Python are : tell() and seek(). These functions work identically with the text files as well as
the binary files.

The tell() Function

The tell() function returns the current position of file pointer in the file. It is used as per the
following syntax :

<file-object>.tell()

where file-object is the handle of the open file, e.g., if

the file is opened with handle fin, then fin.tell() will \ ;"ze :::e;m:;t 7‘:"‘” Help
" . . . | > R . A
give you the position of file pointer in the file .|15,Jiya,78.5 :
opened with the handle fin. 116,Noor,68.9 ;
{17,Akshar, 78.9

Consider some examples, given below. We are using
the same file “Marks.txt” (shown on the right) that
we created in earlier examples.

Now consider the following code snippet :

123,3ivin,89.5 i
>

To get current position of file pointer

fh = open("Marks.txt", "r")
orint(*Initially file-pointer's positionisat:", fh.tell()) ‘ﬁ

print ("3 bytes read are:", fh.read(3)) ——— 3 bytes read
print ("After previous read, Current position of file-pointer:”, £h.tell())

The output produced by the above code will be :
7>z Initially file-pointer is at Oth byte

Notice first 3 bytes of the file contain 1, 2 and a comma

3 bytes read are : 12, IR

of file-pointer :

Initially file-pointer’s position is at

3
\ After reading 3 bytes
file-pointer’s position is 3.

After previous read, current position

. COMPUTER SCIEN ‘
218 SCIENCE WITH PYTHO), Xi

Now consider the following modified code :

fh = open(“Marks.txt”, "r”)

print ("3 bytes read are:“, fh.read(3))

print (“After previous read, Current position of file-pointer:”, fh.tell())
print ("Next S bytes read:”, fh.read(5))

print ("After previous read, Current position of file-pointer:”, fh.tell())

The output produced by above code will be :

>>>
3 bytes read are: 12,

3 Returned by first fi.tell(
After previous read, Current position of file-pointer: 3 = il)

Next 5 bytes read: Hazel
After previous read, Current position of file-pointer: 8

The scek() Function (MoTe

The seek() function changes the position of the file-pointer by The <file-object>.tell() function
placing the file-pointer at the specified position in the open file. returns the current position of
file pointer in an open file.

And the <file-object>.seek)
function places the file pointer

__—" Returned by second fh.tell()

The syntax for using this function is :

<file~-object>.seek(offset[, mode])

at the specified by in an open
where file. s
offset is a number specifying number-of-bytes : " s
mode is a number 0 or 1 or 2 signifying

0 for beginning of file (to move file-pointer w.r.t. beginning of file) it is default position
(i.e., when no mode is specified)
1 for current position of file-pointer (to move file-pointer w.r.t. current position of it)
2 for end of file (to move file-pointer w.r.t. end of file)
file object is the handle of open file.

The seek() function changes the file pointer's position to a new file position = start + offset with
respect to the start position as specified by the mode specified.

Consider the following examples :
fh = open(“Marks.txt”, "r") will place the file pointer at 30th byte from the beginning
‘ of the file (defauls)
fh.seek(30) will place the file pointer ar 30th byte ahead of
’ // current file-pointer position (mode = 1)

fh.seek(30,1) «— will place file pointer at 30 bytes behind (backward

[directiom) from end-of file (mode = 2)
fh.seek(-30, 2) 4"

e Wil place the file pointer at 30th byte from the begin-
fh.seek(30, @) AT ning of she file (mode = 0)

fh.seek (.5, 1) « will place file pointer at § bytes behind (backward direction)
from: current file-pointer position (mode = 1)

FILE HANDLING

chopte’
219

with the above examples, it is clear th
*g® t
.th positive val at you can move the file-pointer i
(wlth po ue for bytes) as well as the backward dir etf_lle Pomt.er' in forward direction
byteS)- ection (by giving negative value for
However, one thing that you should bear in mind is that
a .
o Backward movement of file-pointer i .
* . S i
the beginning of the file (BOF). ot pessible from

You can move the file-pointer in

Forward movem) P A

& o ad of fil ggt of file-pointer is not possible from forward direction (positive value

eendo e (EOF). for bytes) as well as fthe
nsider s backward direction (by givi

Now c.o qme exanTples based on the above-discussed negative value for bvt(esy) i

file pointer location functions. TR s

W Check the position of file pointer after read() function

fh = open("Marks.txt", "r")
print(fh.read())
print("File-pointer is nowat byte :", fh.tell())

The output produced by above code is :

12,Hazel,67.75
15,3J9ya,78.5
16,Noor,68.9
17,Akshar,78.9

23,3ivin,89.5 : L This value is returned by fh.tell()
File-pointer 1s now at byte : 75

As you can make out that file has 74 characters including “\n’ at the end of every line and thus
at the end-of file and thus showing 75.

after reading the entire file, the file-pointer is
Code Snippet 12 Read the last 15 bytes of the file “Marks.xt”

fh= open("Marks.txt", "r")
fh. seek(—15 ,2) e Place the file pointer 15 bytes before the end of

strl = fh.read(15) file (thus mode = 2)
print(” Last 15 bytes 0

f file contain ", strl)

The output produced by above code is :

Last 15 bytes of file contain

ter location functions, . Functions seek) and tell) work

- 23,71V in,89.5

Armed with the knowledge of file-poin ation ¥ :
you can now easily update a file. Following sub-section will

explain this, .
5.6.5B Updating Record(s) in a File

_ Let us recall the three-step updation process menti

(i) Locate the record to pe updated by searching for it.)
(i) Make changes in the loaded record in memory (the read recor)

(iii) Write back onto the file at the exaalonati‘ontof old record.

R e
kol S

xt

e

oned earlier, which is :

R

COMPUTER SCIENCE WITH PYTHO
=X

To determine the exact location, the enhanced v

(1) Open file in read as well as write mode.
(i1) Locate the record :

ersion of the updation Process
(Important)

(it) Make changes in the record by cha
(v) Write back onto the file at the exa
() Place the file pointer at the sto

nging its values in memory, as desired.
ct location of old record.

red record position (the exact location)
1.€., at rpos, which was stored in step a (the exact location of the record bej

Following example program illustrates this process.

5.17(a) Consider the binary file Stu.dat stori

Write a program to update the records
rogram 81.0, get additional bonus marks of 2.

ng student details, which you created in earlier programs,
of the file Stu.dat so that those who have scored more than

Note. Important statements have been highlighted.
import pickle
stu ={}
found = False

open binary file in read and write mode
fin = open('Stu.dat’,

declare empty dictionary object to hold read records

‘rb+') e—nowu 1t is important to open the file in read

. as well as write mode ; hence rb+

read from the file

try: Before reading any record, firstly store its beginning
while True : / position — its exact position

rpos = fin.tell() # store file-pointer

position before reading the record
stu = pickle.load(fin)

Locating the desired record through search condition
if stu['Marks'] >81 : «—

placing the stu[‘Marks'] +=2 ' # changes made in the record; 2 bonus marks added r
ile-pointe, . : i
{;m s fin.seek(rpos) #place the file-pointer at the exact location of the reco)
v o 0
If;c'atlj)ﬂ of the pickle,dump(stu, fin) #nowwrite the updated record on the exact locati
recorg you

stored earlijer !
found = Trye After placing the file-pointer at the exact location,
except EOFE —— now write the updated record
if found == False:

Print("Sorry,
else:

Print("Recor
fin.close()

no matching record found. ")

|
d(s) successfully updated. ") é
close file 5

it 5.1 PUE HANDLING

The above program will look for the de 221

in it . . Sired m .
changes in it and write back into the fije, atching record (with marks > 8 1) and
1t will show you a message : d make the

Record(s) successfully updated

Following program reads the modified fi ,
record is modified. ed file and displays its records. You can see yourself if th
[

.17(b) Display th .
5.17(b) play the records of file Stu.dat, which you modified in of orogsam 5.17(3)

rogram import pickle

stu={} # decl
: are empty diction]
open binary file in read R ary object to hold read records

fin = open(’'Stu.dat’, 'rb")

read from the file
try:
print("File Stu.dat stores these records”)
while True :
stu = pickle.load(fin) # read record in stu dictionary from fin
print(stu) #print the read record

except EOFError:
fin.close() # close file

The output produced by above program is :

File stu.dat stores these records Sov the matchi aisaain b
. , the mat cord’s ma e been

{'Rollno’: 11, 'Name’: 'sia’, 'Ma':ks' ' modiﬁed(conmac mgrer;it;:theoutputaf

{'rRollno': 12, 'Name': 'Guneet’, Marks': 80.5} program 5.12)

{'Rol1no’': 13, 'Name’: 'james', 'Marks': 81.0}

{'RolTno’: 14, 'Name’: 'Ali’, 'marks': 80.5}

- 85.5y —

file pointer packwards using negative values in bytes BUT for that you

i ' ot stored in the file) in bytes. Getting the size of a
need to get the size of record (i-e., the object s e iffren il

record in bytes is not straight forward in Python. For th.at you n(eieth e
(e.g., sys or cpickle etc.). Covering these modules here is beyon e scope

we advise you to use the method covered above.

You can also place the

Gurnam in file Stu.dat (created in earlier

5.18 Write a program to modify the name of rollno 12 s
programS)
Rrogram
import pickle
stu={}
found = False
fin = open('Stu.dat’, 'pb+') HoOPE

read from the file

jonary object to hold read records

declare empty dict

n binary filein read and write mode

A
|

COMPUTER SCIENCE WITH PYTHON
£

try:
while True : # it will become False upon EOF exception
pos = fin.tell() # store file-pointer position before reading the Pecon
stu = pickle.load(fin) # read record in studictionary from fin file hang),
if stu[‘Rollno‘] ==12: #locate matching record
stu["Name’] = 'Gumaa # changes made in the record
fin.seek(rpos) # place the file- pointerattheexactlocaumgfmm*
pickle.dump(stu, fin)
found = True
except EOFError:

if found == False:

print(”Sorry, no matching record found.”)
else:

print("Record(s) successfully updated.”)
fin.close() # close file

If run the code of program 5.17(b) to display the contents of modified file, it will show you the
contents as :

File Stu.dat stores these records

{*Ro11no’: 11, ‘Name’: ‘sia’, ‘iarks’: 87.5}
See, the name of record with Rollno 12 is modified

4//- : .
{*RolIno’: 12, ‘Name’: ‘Gurnam’, ‘Marks’: 80.5} Compare with the output of previous program.
{*rRo11Ino’: 13, ‘Name’: ‘James’, ‘marks’: 81.0}
{‘Ro1Ino’: 14, ‘Name’: ‘Ali’, ‘Marks’: 80.5}

Whﬂemodlfymgabmaryiﬂe mkesmdlatdledatatypesdomtgetchangedfoﬂhevahmbemg
modified. For example, if you modify an integer field as value +value *0.25; then the result may be
a floating point number. Such a change may affect pickling and unpickling process and sometimes
it leads to the Unpickling Error. Thus, make sure that modification of file data does not change the
data type of the value being modified.

If you still need to have such modification then you can do it in a different way —

(i) create a new file ;

(i7) write records into the new file until the record to be modified is reached;
(iify modify the record in memory and write the modified record in the new file;

(iv) Once done. Delete the old file and rename the new file with the old name.

(v) Deleting and renaming of files can be done through the os module’s removel) and rename()
functions as os.remove(<filename>) and os.repame(<old filepame>, <new filename>).

(Make sure to :mporttheosmndulz beforeusing ns funcllnns)

z
;
g

Followmg excephons may arise while working with the pxckle module
pickle.PicklingError Raised when an unpicklable object is encountered while writing:

pickle.UnpicklingError Raised during unpickling of an object, if there is any problem (such
as data corruption, access violation, etc).

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

