3.6 Creating Histograms with PyPlot

A histogram is a summarisation tool for discrete or continuous data. A histogram provides a visual interpretation of numerical data by showing the number of data points that fall within a specified range of values (called bins). It is similar to a vertical bar graph. However, a histogram, unlike a vertical bar graph, shows no gaps between the bars (see Fig. 3.3)
Histograms are a great way to show results of continuous data, such as : weight, height, how much time, and so forth. But when the data is in categories (such as Country or Subject etc.), one should use a bar chart.

Let us now talk about how you can create histograms in Python.

Histogram using hist() Function

The hist() of PyPlot module lets you create and plot histogram from a give sequence(s) of numbers. The syntax for using hist() function of plyplot is :

```
matplotlib.pyplot.hist(x, bins = None, cumulative = False, histtype = 'bar',
    align = 'mid', orientation = 'vertical', )
```


Parameters :

$\mathbf{x} \quad(\mathrm{n}$,$) array or sequence of (\mathrm{n}$,) arrays to be plotted on histogram.
bins \quad int 3, optional. If an integer is given, bins +1 bin-edges are calculated and returned. Default value is automatically provided internally ${ }^{4}$.
cumulative bool, optional; If True, then a histogram is computed where each bin gives the counts in that bin plus all bins for smaller values. The last bin gives the total number of datapoints. Default is False.
histtype l'bar', 'barstacked', 'step', 'stepfilled'l, optional ; the type of histogram to draw. 'bar' is a traditional bar-type histogram. If multiple data are given, the bars are arranged side by side.
3. bins can take a sequence too. For complete syntax and working refer to pyplot documentation.
4. taken from rcParams dictionary of matplotlib that contains default values for various parameters.
'barstacked' is a bar-type histogram where multiple data are stacked on top of each other.
'step' generates a lineplot that is by default unfilled.
'stepfilled' generates a lineplot that is by default filled.
Default is 'bar' type of histtype
orientation $\{$ 'horizontal', 'vertical'\}, optional ; If 'horizontal', barh will be used for bar-type histograms.

Have a look at following examples that plot histograms from two ndarrays \mathbf{x} and \mathbf{y} each having randomly generated numbers (more than 100 number; both arrays shown below).
$x=\operatorname{array}([-0.04773042,-0.54508323,0.85572137, \ldots, 0.44027371,-0.26309649,-0.87732363])$
$y=\operatorname{array}([-0.02914181,-0.33280057,0.52246068, \ldots, 0.26880911,-0.1606299,-0.53564994])$

Before you plot, make sure to import the required library/ modules, e.g., we have given following import statements in the beginning :
import matplotlib.pyplot as pl
import numpy as np

NOTE

The pyplot is a module in the matplotlib data visualization package of Python. That is why you always import it as matplotib.pyplot.

1. Plot a histogram from an ndarray x with 20 bins

 To specify bins, the bins argument of hist() is used.

2. Plot a histogram from an ndarray \mathbf{y} with $\mathbf{5 0}$ bins

3. Plot a cumulative histogram of ndarray x with 30 bins

For cumulative histogram, argument cumulative of hist() function is used.

4. Plot ndarray x 's histogram as 'step' type histogram with 20 bins

To specify histogram type, argument histtype is to be used

5. Plot both ndarray x and y in same histogram with

A histogram is a summarisation tool for discrete or continuous data. A histogram provides a visual interpretation of numerical data by showing the number of data points that fall within a specified range of values (called bins).

6. Plot a stacked bar type histogram from both ndarray x and y
(a) regular histogram

```
pl.hist([x,y], histtype = 'barstacked')
```


(b) cumulative histogram
pl. hist $([x, y]$, histtype = 'barstacked', cumulative $=$ True $)$

7. Plot a horizontal histogram from ndarray y with 50 bins

To change the orientation of the histogram, we can use orientation argument. pl.hist $(y$, bins $=50$, orientation $=$ 'horizontal' $)$

EXAMPLE 27 A survey gathers height and weight of 100 participants and recorded the participants' ages as

$$
\begin{aligned}
\text { ages }=[& 1,1,2,3,5,7,8,9,10,10,11,13,13,15,16,17,18,19,20,21, \\
& 21,23,24,24,24,25,25,25,25,26,26,26,27,27,27,27,27,29,30, \\
& 30,30,30,31,33,34,34,34,35,36,36,37,37,37,38,38,39,40,40,41, \\
& 41,42,43,45,45,46,46,46,47,48,48,49,50,51,51,52,52,53,54, \\
& 55,56,57,58,60,61,63,65,66,68,70,72,74,75,77,81,83,84,87,89,90,91]
\end{aligned}
$$

Write a program to plot a histogram from above data with 20 bins.

SOLUTION

import matplotlib.pyplot as plt.

$$
\begin{aligned}
\text { ages }=[& \\
& 1,1,2,3,5,7,8,9,10,10,11,13,13,15,16,17,18,19,20,21, \\
& 21,23,24,24,24,25,25,25,25,26,26,26,27,27,27,27,27,29,30, \\
& 30,30,30,31,33,34,34,34,35,36,36,37,37,37,38,38,39,40,40,41, \\
& 41,42,43,45,45,46,46,46,47,48,48,49,50,51,51,52,52,53,54, \\
& 55,56,57,58,60,61,63,65,66,68,70,72,74,75,77,81,83,84,87,89,90,91]
\end{aligned}
$$

plt.hist(ages, bins = 20)
plt.title ("Participants' Ages Histogram") plt.show()

EXAMPLE 28 Prof Awasthi is doing some research in the field of Environment. For some plotting purposes, he has generated some data as :

```
\(m u=100\)
sigma \(=15\)
\(x=m u+\) sigma \(*\) numpy. random. randn (10000)
```

Write a program to plot this data on a horizontal histogram with this data.
Output

SOLUTION

```
import numpy as np
import matplotlib.pyplot as plt
mu=100
sigma = 15
x = mu + sigma * np.random. randn(10000)
plt.hist(x, bins = 30, orientation = 'horizontal')
plt.title('Research data Histogram')
plt.show()
```


EXAMPLE 29 Prof Awasthi is doing some research in the field of Environment. For some plotting purposes, he has generated some data as:

```
\(m u=100\)
\(\operatorname{sigma}=15\)
\(x=m u+\) sigma \(*\) numpy . random. randn (10000)
\(y=m u+30 * n p . r a n d o m . r a n d n(10000)\)
```

Write a program to plot this data on a bar-stacked horizontal histogram with both x and y axes.
Output

SOLUTION

import numpy as np
import matplotlib.pyplot as plt
$m u=100$
sigma $=15$
$x=m u+$ sigma * np. random. randn(10000)
$y=m u+30 * n p$. random. $\operatorname{randn}(10000)$
plt.hist $([x, y]$, bins = 100, histtype = 'barstacked' $)$
plt.title('Research data Histogram')
plt.show()

3.7 Creating Frequency Polygons

A frequency polygon is a type of frequency distribution graph. In a frequency polygon, the number of observations is marked with a single point at the midpoint of an interval. A straight line then connects each set of points. Frequency polygons make it easy to compare two or more distributions on the same set of axes ${ }^{5}$.
Let's look at an example of a frequency polygon.

Figure 3.4 Frequency polygon

3.9 Plotting Data from a DataFrame

Till now you have plotted data from either linear lists, or 1D arrays. You can also plot data from a DataFrame using its columns selectively.
You can do it in two ways:
(i) Using PyPlot's graph functions
(ii) Using DataFrame's plot() function. It is available from version 0.17 .0 onwards.

3.9.1 Plotting a DataFrame's Data using PyPlot's Graph Functions

To plot a DataFrame's data, just pass its column name to the Pyplot's graph functions (plot(), bar(), barh(), scatter(), boxplot(), hist()). It will treat the passed column's data as a Series and plot it, e.g., if we have a DataFrame df2 as shown below :

DataFrame df2

	Age	Projects
0	30	13
1	27	17
2	32	16
3	40	20
4	28	21
5	32	14

DataFrame df			Projects	Budget			
	Name	Sex	Position	City	Age	Prolar	
0	Rabia	F	Manager	Bangalore	30	13	8
1	Evan	M	Programmer	New Delhi	27	17	13
2	Jia	F	Manager	Chennai	32	16	32
3	Lalit	M	Manager	Mumbai	40	20	21
4	Jaspreet	M	Programmer	Chennai	28	21	17
5	Suji	F	Programmer	Bangalore	32	14	10

DataFrame fdf

	Day1	Day2	Day3	Day4	Day5
0	74.25	56.03	59.30	69.00	89.65
1	76.06	68.71	72.07	78.47	79.65
2	69.50	62.89	77.65	65.53	80.75
3	72.55	56.42	66.46	76.85	85.08

And if you write the code as:
import pandas as pd
import matplotlib.pyplot as plt
: \#df2 created or loaded
plt.plot(df2.Age)
It will give you a plot as shown here.

You can also plot a bar chart using this DataFrame's data as :

```
plt.bar(df2.index, df2.Projects)
```

With all plotting functions of PyPlot, you can send individual column names of a DataFrame to plot their data. However, with plot(), you can send just the name of DataFrame.

The plot() can take a DataFrame's name and will plot all columns
Unlike other plotting functions of PyPlot, with plot () you can send just the dataframe's name and it will plot all the columns of a DataFrame. It is handy if your DataFrame has all numeric columns, e.g., if we have a DataFrame df2 as shown in reference 3.2.

And if you write the code as:

```
import pandas as pd
import matplotlib.pyplot as plt
: # df2 created or loaded
plt.plot(df2)
```

It will give you a plot as shown adjacent, where it has plotted all the columns (Age and Projects) in the DataFrame df2.

But what if your DataFrame has some non-numeric columns. It will still try to plot everything, e.g., considering the DataFrame df (Reference 3.2), if you write the code as :

```
import pandas as pd
import matplotlib.pyplot as plt
: #df created or loaded
plt.plot(df)
```

It will give you a plot as shown below, which won't make much of sense.

To avoid a situation like above (plotting of non-numeric columns). you can explicitly specify the column names to be plotted, e.g., to plot only the Age and Profects columns against the index values of the above DataFrame $\mathrm{df}_{\text {, }}$ you may write

```
import pandas as pd
import matplotlib.pyplot as plt
: $d+2 created or loaded
plt.plot(df.index, df.Age, df.Projects)
```

It will give you a plot as shown below, where it has plotted only Age and Projects columns against index.

3.9.2 Plotting a DataFrame's Data using DataFrame's plot()

Pandas provides a function plot() which you can use with DataFrame as:

```
<DF>.plot()
```

And which will plot from the data of the DataFrame automatically. The DataFrame's plot() is a versatile function, which can plot all types of chart by just specifying kind argument.
Various arguments that <DF>.plot() can take are ${ }^{7}$:
dataSeries or DataFrame : The object for which the method is called.
kind : type of the plot, can take values as
'line": line plot (default)
bar': vertical bar plot
barh': horizontal bar plot
'hist' : histogram
box : boxplot
pie' : pie plot
'scatter': scatter plot
And some other plot types
Before we show you the use of $\langle\mathrm{DF}>$ plot(), let us talk about the advantages of it
\Leftrightarrow It plots only the numeric columns unlike plot() of PyPlot when used with a DataFrame.
\Leftrightarrow It automatically adds legends for the plotted data
7. Please note, we are not giving full syatax of this function here as it is beyond the scope of this book.

NOTES
*With scatter, you have to explicitly specify the x and y argureents.

* If you do not give kind argument at all, line chatt will be plotted.

Consider the df and If DataFrame you have used above and plot these using pandas plot 3
import pandas as pd
import matplotlib. pyplot as pit
: \#df2 created or loaded
df2. plot() \#d 2 contains numeric columns only

Of. plot() of contains numeric as well as non-numeric columns

* above code in fe is equivalent to df.plot(kind a 'line')

Just play with the kind argument and create different chart types.
© Creating scatter charts with DF.plot() (see left figure below)
fol. $\operatorname{plot}\left(x=\right.$ 'Da y1', $y=$ 'Da y2' $^{\prime}, k$ ind $=$ 'scatter' $)$

- Creating bar charts with DF.plot() fdf.plot(kind = "bar")

\Leftrightarrow Creating horizontal bar charts with DF.plot() (see left figure below)
fdf.plot(kind = 'barh')

\Leftrightarrow Creating histogram with DF.plot() (see right figure above)
fdf.plot(kind = 'hist')
\Leftrightarrow Creating boxplots with DF.plot()
fdf.plot(kind = 'box')

EXAMPLE 35 Consider the following DataFrame prodf:

	Fruits	Pulses	Rice	Wheat
Andhra P.	7830.0	931.0	7452.4	NaN
Gujrat	11950.0	818.0	1930.0	2737.0
Kerala	113.1	1.7	2604.8	NaN
Punjab	7152.0	33.0	11586.2	16440.5
Tripura	44.1	23.2	814.6	0.5
Uttar P.	24169.2	2184.4	13754.0	30056.0

Write a program to plot a scatter chart with the columns Pulses.

SOLUTION

Since the given DataFrame prodf does not have numeric index, we cannot use it for plotting because x has the numeric for scatter().
We can create numeric values for x-axis as :

$$
\begin{aligned}
& x \text {-axis will generate }[0,1,2,3,4,5]
\end{aligned}
$$

OR

$$
x=\text { range }(1, \text { len }(\text { prodf })+1) \quad \# \text { will generate }[1,2,3,4,5,6]
$$

* You can create scatter charts using either plot() function or scatter() function.
\% A Bar Graph/Chart is a graphical display of data using bars of different heights.
\% You can create bar chart using pyplot's bar() function.
\because You can change colors of the bars, widths of the bars in bar() function.
* Use bark() function to create horizontal bar chart.
$\% \quad$ The pie() creates a pie chart.
$\%$ The plot area is known as figure and every other element of chart is contained in it.
\% The axes can be labelled using xlabel() and ylabel() functions.
$\because \quad$ The limits of axes can be defined using slim() and glim() functions.
*. The tick marks for axes values can be defined using sticks() and yticks() functions.
* The title() function adds title to the plot.
\therefore Using legend() function, one can add legends to a plot where multiple data ranges have been plotted, but before that the data ranges must have their label argument defined in plot() or bar() function.
* The lon argument of legend() provides the location for legend, which by default is 1 or "upper right".

A histogram is a summarisation tool for discrete or continuous data.
A A histogram provides a visual interpretation of numerical data by showing the number of data points that fall within a specified range of values (called bins).
*. Pyplot module's hist() lets you create histograms.
$\%$ A frequency polygon is a type of frequency distribution graph.
In a frequency polygon, the number of observations is marked with a single point at the midpoint of an interval.
T. The box plot is used to show the range and the middle half of the ranked data.
\because The boxplot() of pyplot lets you draw boxplots.
\because A dataframe's data can be plotted in various chart types using $\langle D F\rangle . p l o t(k i n d=<t y p e\rangle)$ function.
biective type Questions

OTQs

Multiple Choice Questions

1. PyPlot is an interface of Python's \qquad library.
(a) seaborn
(b) plotly
(c) ggplot
(d) matplotlib
2. For 2 D plotting using a Python library, which library interface is often used ?
(a) seaborn
(b) plotly
(c) matplotlib
(d) matplotlib.pyplot
3. Which of the following is not a valid chart type ?
(a) histogram
(b) statistical
(c) pie
(d) box
4. Which of the following is not a valid plotting function of pyplot?
(a) plot()
(b) bar()
(c) line()
(d) pie()
5. Which of the following plotting functions does not plot multiple data series ?
(a) plot()
(b) bar()
(c) pie()
(d) bark()
6. The plot which tells the trend between two graphed variables is the \qquad graph/chart.
(a) line
(b) scatter
(c) bar
(d) pie
graph/chart.
(a) line
(b) scatter
(c) bar
(d) pie
7. A \qquad is a summarisation tool for discrete or continuous data.
(a) quartile
(b) histogram
(c) mean
(d) median
8. A visual representation of the statistical five number summary of a given dataset is known an
(a) histogram
(b) frequency distribution
(c) boxplot
(d) frequency polygon
9. Which of the following functions is used to create a line chart ?
(a) line()
(b) plot()
(c) chart()
(d) plotine()
10. Which of the following function will produce a bar chart ?
(a) plot()
(b) $\operatorname{bar}()$
(c) plotbar()
(d) bath()
11. Which of the following function will create a vertical bar chart ?
(a) plot()
(b) bar()
(c) plotbar()
(d) bath()
12. Which of the following function will create a horizontal bar chart ?
(a) plot()
(b) bar()
(c) plotbar()
(d) bark()
13. To specify the style of line as dashed, which argument of plot() needs to be set ?
(a) line
(b) width
(c) style
(d) linestyle
14. The datapoints plotted on a graph are called \qquad -.
(a) points
(b) pointers
(c) marks
(d) markers
15. A \qquad graph is a type of chart which displays information as a series of data points connected
by straight line segments.
(a) line
(b) bar
(c) pie
(d) boxplot
16. To create scatter charts using plot(), which argument is skipped?
(a) marker
(b) linestyle
(c) markeredgecolor
(d) linewidth
(a) size
(b) s
(d) markersize
17. Which argument of $\operatorname{bar}()$ lets you set the thickness of bar ?
(a) thick
(b) thickness
(c) width
(d) barwidth
18. Which function lets you set the title of the plot?
(a) title()
(c) graphtitle()
(d) all of these
\qquad .
[CBSE Sample Paper 2020-211
19. The command used to give a heading to a graph is
(a) plt.show()
(b) plt.plot()
(c) plt.xlabel()
(d) pltstitle()
20. Which function would you use to set
s for x-axis of the plot?
(a) limits()
(b) x limits()
(c) $x \lim ()$
(d) $\lim ()$
21. Which function is used to show legends?
$\begin{array}{ll}\text { (a) display () } & \text { (b) show() }\end{array}$
(c) legend()
$\begin{array}{lll}\text { (a) display() } & \text { (b) show() } & \text { (c) legend } \\ \text { 24. Which argument must be set with plotting functions for legend }) \text { to display the le }\end{array}$
(b) label
(a) data
(d) legends()
22. Which function is used to create a histogram ?
(a) histo()
(b) histogram()
(c) hist()
(d) histtype
23. Which argument in hist() is used to create a stacked bar type histogram ?
(a) histt
(b) histtype
(c) type
(d) barstacked
24. Which of the following functions can plot only one data series ?
(a) plot()
(b) bar()
(c) boxplot()
(d) pie()
25. Which argument must be provided to create wedges out of a pie chart ?
(a) label
(b) autopct
(c) explode
(d) wedge
26. Which argument should be set to display percentage share of each pie on a pie chart ?
(a) label
(b) autopct
(c) explode
(d) wedge
27. Which function creates a boxplot?
(a) box()
(b) plot()
(c) boxplot()
(d) showbox()
28. Which argument of boxplot() is used to create a filled boxplot?
(a) fill
(b) box
(c) patch_artist
(d) patch

Fill in the Blanks

1. A \qquad is a plot that shows the underlying frequency distribution of a set of continuous data.
2. Pyplot interface is a collection of methods within \qquad library of Python.
3. Pyplot's \qquad function is used to create line charts.
4. Pyplot's \qquad function is used to create horizontal bar charts.
5. Pyplot's \qquad function is used to create scatter charts.
6. Pyplot's \qquad function is used to create histogram.
7. The datapoints plotted on a graph are called \qquad .
8. The \qquad argument of plot() specifies the width for the line.
9. The \qquad argument of plot() specifies the style of the line.
10. The \qquad argument of $\operatorname{bar}()$ specifies the bar width.
11. The \qquad function is used to specify ticks for x-axis.
12. To save a plot, \qquad function is used.
13. The \qquad argument of hist() is set to create a horizontal histogram.
14. The \qquad argument shows the arithmetic mean on a boxplot.
15. The \qquad argument in a boxplot() creates a notched boxplot.
16. The \qquad argument of legend() provides the location of legend.
17. Using Python Matplotlib \qquad can be used to count how many values fall into each interval. (line plot/bar graph/histogram)
[CBSE Sample Paper 2020-21]

True/False Questions

1. PyPlot is a sub-library of matplotlib library.
2. Statement import pyplot.matplotlib is a valid statement for working on pyplot functions.
3. By default, pie chart is printed in elliptical or oval shape.
4. The default shape of pie chart cannot be changed from oval.
5. A line chart can be plotted using pyplot library's line() function.
6. A line chart can be plotted using pyplot library's plot() function.
7. A bar chart can be plotted using pyplot library's bar() function.
8. A bar chart can be plotted using pyplot library's barh() function.
9. It is not possible to plot multiple series of values in the same bar graph.
10. A standard marker of representing a non-number data in Python libraries is NaN .
11. If the linestyle argument is missing along with markerstyle-string in a plot(), a scatter type chart get created.
12. The $\operatorname{bar}($) function can also create horizontal bar charts.
13. The pie() function can plot multiple data series.
14. The plot is always as per the data series being plotted irrespective of the $\mathbf{x l i m}()$.
15. Frequency polygon is created from histogram.

NOTE: Answers for OTQs are given at the end of the book.

Solved Problems

1. What is data visualization ? What is its significance?

Solution. Data visualization is a general term that describes any effort to help people understand the significance of data by placing it in a visual context. In simple words, Data visualization is the process of displaying data/information in graphical charts, figures and bars.
Patterns, trends and correlations that might go undetected in text-based data can be exposed and recognized easier with data visualization techniques or tools such as line chart, bar chart, pie chart, histogram, scatter chart etc. Thus with data visualization tools, information can be processed in efficient manner and hence better decisions can be made.
2. What is Python's support for Data visualization?

Solution. Python supports data visualizations by providing some useful libraries for visualization. Most commonly used data visualization library is matplotlib.
Matplotlib is a Python library, also sometimes known as the plotting library. The matplotlib library offers very extensive range of 2D plot types and output formats. It offers complete 2D support along with limited 3D graphic support. It is useful in producing publication quality figures in interactive environment across platforms. It can also be used for animations as well.
There are many other libraries of Python that can be used for data visualization but matplotlib is very popular for 2D plotting.
3. What is pyplot? Is it a Python library ?

Solution. The pyplot is one of the interfaces of matplotlib library of Python. This interface offers simple MATLAB style functions that can be used for plotting various types of charts using underlying matplotlib library's functionality.
Pyplot is an interface, i.e., a collection of methods for accessing and using underlying functionality of a library, not a library. The matplotlib library has may other interfaces too, along with pyplot interface.
4. Name some commonly used chart types.

Solution. Some commonly used chart types are : Line chart, Bar chart, Pie chart, Scatter chart etc.
5. Name major components of a chart.

Solution. Major components of a chart are : Figure, Axes, Axis label, Limits, Title, Legends etc.
6. Name the functions you will use to create a (i) line chart, (ii) bar chart, (iii) scatter chart.

Solution.
(i) matplotlib.pyplot.plot()
(ii) matplotlib.pyplot.bar()
(iii) matplotlib.pyplot.plot() and matplotlib.pyplot.scatter()
7. Consider the code given below (all required libraries are imported) and the output produced by it. Why is the chart showing one bar only while we are plotting four values on the chart?

```
:
a=[3,6,9, 12]
b}=[30,48,54,48
plt.xlim(-3, 5)
plt.bar(a,b)
plt.show()
```


Solution. The given chart is showing a single bar as the limits of x-axis have been set as -3 to 5 . On this range, only one value from the data range being plotted falls i.e., only $\mathrm{a}[0]$ and $\mathrm{b}[0]$ fall on this range. Thus only a single value $\mathrm{b}[0]$ i.e., 30 is plotted against a[0] i.e., 3 .
8. What changes will you make to the code of previous question so that the bars are visible for all four points? But do keep in mind that the x-axis must begin from the point -3 .

Solution.

If we change the limits of x-axis so that all the points being plotted fall in the range of limits, all values will show. Thus, we have changes the limits from -3 to 15 , in place of -3 to 5 .

```
plt.xlim(-3, 15)
plt.bar(a,b)
plt.show()
```


9. Fill in the blank with the correct statement to plot a bar graph using a matplotlib method, so that Company $A B C$ can see the graphical presentation of its Profit figures for the 2nd quarter of the financial year 2019 (i.e., August, September, October, November).
10. Why is following code not producing any result? Why is it giving crrors?
(Note. All required libraries have been imported and are available)

```
a=range(10, 50, 12)
b= range (90, 200, 20)
matplotlib.pyplot.plot(a, b)
```

Solution. The above code is producing error because the two sequences being plotted i.e., \mathbf{a} and \mathbf{b} do not match in shape. While sequence ' \mathbf{a} ' contains 4 elements, sequence ' \mathbf{b} ' contains 6 elements. For plotting, it is necessary that the two sequences being plotted must match in their shape.
11. What changes will you recommend to rectify the error in previous question's code?

Solution. Since both the sequences being plotted must match in their shape, we can achieve this either by adding two elements to sequence a so that it has the same shape as sequence \mathbf{b} (i.e., 6 elements) or by removing two elements from sequence \mathbf{b} so that it matches the shape of sequence a (i.e., 4 elements).
For instance,

12. Consider the following graph. Write the code to plot it.

```
a = range(10, 50, 12)
```

a = range(10, 50, 12)
b = range(90, 160, 20)
b = range(90, 160, 20)
b = range(90, 160, 20)
matplotlib.pyplot.plot(a, b)

```
matplotlib.pyplot.plot(a, b)
```

matplotlib.pyplot.plot(a, b)

```
onsider the following graph. Write the code to plot it.


Solution.
```

import matplotlib.pyplot as plt
plt.plot([2,7],[1,6])
plt.show()

```

\section*{Alternative answer}
import matplotlib.pyplot as plt
\(a=[1,2,3,4,5,6]\)
\(b=[2,3,4,5,6,7]\)
plt.plot (a,b)
13. Given an ndarray \(p\) as \(([1,2,3,4])\). Write code to plot a bar chart having bars for \(p\) and \(p^{* *} 2\) (with red color) and another bar for \(p\) vs \(p^{*} 2\) (with blue color). (assume that libraries have been imported)


Solution.
```

plt.bar(p, p**2, color = 'r', width = 0.3)
plt.bar(p+0.3, p*2, color = 'b', width = 0.3)

```
14. Draw the following bar graph representing the number of students in each class.


\section*{Solution.}
import matplotlib. pyplot as plt
Classes = ['VII', 'VIII', 'IX', 'X']
Students \(=[40,45,35,44]\)
plt.bar(classes, students)
plt.show()
15. The table below shows the Marks of two students for the four unit tests for academic session 2019-2020. Fill in the blanks to draw a line graph with Test Names on the X-axis and Marks on the \(Y\)-axis. [CBSE D 2020C]
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Tests } & \multicolumn{2}{|c|}{ Marks } \\
\cline { 2 - 3 } & Rohit & Suman \\
\hline Unit1 & 85 & 97 \\
Unit2 & 88 & 99 \\
Unit3 & 89 & 90 \\
Unit4 & 87 & 92 \\
\hline
\end{tabular}
```

import matplotlib.pyplot as plt
Tests =

```
\(\qquad\)
``` \#Assign Test Names
Rohit \(=\)
```

$\qquad$

``` \#Assign Marks of Rohit Suman =
``` \(\qquad\)
``` \#Assign Marks of Suman
plt.plot(Tests, Rohit, Suman)
 \#Label Y axis as Marks
\# \#Add legends "Rohit", "Suman" for the lines
plt.show()
```

Solution.

```
['Unit1','Unit2','Unit3', 'Unit4']
[85,88,89,87]
[97,99,90,92]
plt.ylabel('Marks')
plt.legend(['Rohit','Suman'])
```

16. What is scatter chart? How is it different from line chart ?

Solution. The scatter chart is a graph of plotted points that show the relationship between two sets of data. With a scatter plot, a mark or marker (usually a dot or small circle), represents a single data point. With one mark (point) for every data point a visual distribution of the data can be seen. Depending on how tightly the points cluster together, you may be able to discern a clear trend in the data.
The difference is that with a scatter plot, the decision is made from the data points such that the individual points should not be connected directly together with a line but, instead express a trend.
17. What is histogram? How is it useful ?

Solution. A histogram is a statistical tool used to summarise discrete or continuous data. It provides a visual interpretation of numerical data by showing the number of data points that fall within a specified range of values (called "bins").
18. Following code is plotting the desired graph but legends are not showing despite giving the legend () of PyPlot. What could be the reason? Suggest a solution for the problem.

```
plt.plot(x,y)
plt.plot(x, z)
plt.legend(loc = "upper left")
```

Solution. The above code won't print the legends because with the plot( ), the labels are missing. The legend( ) will work only when we specify label for data series being plotted in the plot().

The solution for above problem will be :
plt.plot ( $x, y$, label $=$ " $Y$ data" )
plt.plot ( $x, z$, label $=$ " $Z$ data" )
plt.legend $($ loc $=$ "upper left")
(b)

```
import matplotlib.pyplot as pl
: #df created
pl.scatter(df['meters'], df['weight'])
```

21. Write a program to create a histogram that plots two ndarrays $x$ and $y$ with 48 bins, in stacked horizontal histogram.
Solution. import matplotlib.pyplot as pl
 : \#df created pl.scatter( df['meters'], df['weight']) pl.hist $([y, x]$, bins $=48$, orientation $=$ 'horizontal', histtype $=$ 'barstacked')

22. Write code to add plot title and axes titles to above plot.

Solution.
import matplotlib.pyplot as pl
: \#df created
pl.scatter( df['meters'], df['weight'])
pl.hist ([y, x], bins = 48, orientation = 'horizontal', histtype = 'barstacked')
pl.title ("horizontal stackedbar hhistogram")
 set of data :
$34,18,100,27,54,52,93,59,61,87,68,85,78,82,91$
Solution.
import matplotlib.pyplot as pl
$A=[34,18,100,27,54,52,93,59,61,87,68,85,78,82,91]$ pl. boxplot $(A$, showmeans $=$ True $)$


## Assignment

## Type A: Short Answer Questions/Conceptual Questions

1. Name the library of which the PyPlot is an interface.
2. Write the statement to import PyPlot in your script.
3. Name the functions to create the following :
(a) line chart
(b) bar chart
(c) horizontal bar chart
(e) scatter chart
(f) boxplot
(g) pie chart
(d) histogram
4. What is a line chart ?
5. What is a scatter chart ?
6. What is a pie chart ?
7. What is a bar chart ?
8. What is a histogram ?
9. What is a boxplot ?
10. What is a frequency polygon?
11. Name the function to label axes.
12. Name the function to give title to a plot.
13. Name the function to set figure size of a plot.
14. Name the function to set limits for the axes.
15. Name the function to show legends on a plot.
16. Name the function to add ticks on axes.

## Type B:Application Based Questions

1. What is the significance of data visualization?
2. How does Python support data visualization?
3. What is the use of matplotlib and pyplot ?
4. What are the popular ways of plotting data ?
5. Compare bar( ) and barh() functions.
6. What is the role of legends in a graph/chart ?
7. What will happen if you use legend( ) without providing any label for the data series being plotted ?
8. What do you understand by xlimit and ylimit ? How are these linked to data being plotted ?
9. When should you use (i) a line chart, (ii) a bar chart, (iii) a scatter chart, (iv) pie chart, (v) boxplot ?
10. A list namely temp contains average temperatures for seven days of last week. You want to see how the temperature changed in last seven days. Which chart type will you plot for the same and why?
11. What is histogram ? How do you create histograms in Python?
12. What are various types of histograms that can be created through hist() function ?
13. When should you create histograms and when should you create bar charts to present data visually?
14. What is cumulative histogram ? How do you create it using PyPlot?
15. What is frequency polygon? How do you create it?
16. What is 5 point summary?
17. What is Boxplot? How do you create it in Pyplot?

## Type C : Practical/Knowledge Based Questions

(a)

$$
\begin{aligned}
& A=n p \cdot \operatorname{arange}(2,20,2) \\
& B=n p \cdot \log (A) \\
& \text { plt.plot }(A, B)
\end{aligned}
$$

Will any code produce error ? Why/Why not?
(b)
$A=n p \cdot \operatorname{arange}(2,20,2)$
$B=n p \cdot \log (A)$
plt. $\operatorname{bar}(A, B)$
(c)
$X=n p$.arange ( $1,18,2.655$ )
$B=n p . \log (X)$
plt.scatter(X, Y)
2. Write the output from the given python code :

```
import matplotlib.pyplot as plt
Months = ['Dec', 'Jan', 'Feb', 'Mar']
Attendance = [70, 90, 75, 95]
plt.bar(Months, Attendance)
plt.show()
```

3. Write a program to add titles for the $X$-axis, $Y$-axis and for the whole chart in above codes.
4. plt.plot(A, B) produces (A and B are the sequences same as created in question 3) chart as :

Write codes to produce charts as shown below :



5. Given a data frame df1 as shown below :

	1990	2000	2010
a	52	340	890
b	64	480	560
c	78	688	1102
d	94	766	889

Write code to create :
(a) A scatter chart from the 1990 and 2010 columns of dataframe df1
(b) A line chart from the 1990 and 2000 columns of dataframe df1
(c) Create a bar chart plotting the three columns of dataframe dit
6. The score of four teams in 5 IPL matches is available to you. Write a program to plot these in a bar chart.
7. The score of a team in 5 IPL matches is available to you. Write a program to create a pie chart from this data, showing the last match's performance as a wedge.
8. The prices of a stock for 3 months are given. Write a program to show the variations in prices for each month by 3 lines on same line chart. Make sure to add legends and labels. Show grid also.
9. A distribution data stores about 1000 random number. Write a program to create a scatter chart from this data with varying point sizes.
10. Nayya has started an online business. A list stores the number of orders in last 6 months. Write a program to plot this data on a horizontal bar chart.
11. Given the following set of data :

```
Weight measurements for }16\mathrm{ small orders of French-fries (in grams).
```

78	72	69	81	63	67	65	75
79	74	71	83	71	79	80	69

(a) Create a simple histogram from the above data
(b) Create a horizontal histogram from the above data
(c) Create a step type of histogram from the above data
(d) Create a cumulative histogram from the above data
12. Create an ndarray containing 16 vaiues and then plot this array along with dataset of previous question in same histogram
(a) normal histograms
(b) cumulative histograms
(c) horizontal histograms
13. Out of above plotted histograms, which ones can be used for creating frequency polygons ? Can you draw frequency polygons from ali the above histograms?
14. Create/draw frequency polygon from the data used in above questions.
15. From the following ordered set of data :

```
63,65,67,69,69,71, 71, 72, 74, 75, 78, 79, 79, 80, 81, 83
```

(a) Create a horizontal boxplot
(b) Create a vertical boxplot
(c) Show means in the boxplot
(d) Create boxplot without the box
16. Sina has created ordered set of data from the number of new customers registered on his online service centre in last 20 months.
Write a program to plot this data on a filled boxplot with means shown.

