
1 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N 2 0 2 1 - 2 2)

2 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N 2 0 2 1 - 2 2)

CHIEF PATRON

Sh. B L Morodia

Deputy Commissioner

KVS (RO), Jaipur

PATRON

Shri D R Meena

Assistant Commissioner

KVS(RO), Jaipur

CONTENT COORDINATOR/COURSE DIRECTOR

Sh. Narsi Lal

 Principal

KV Suratgarh Cantt

Coordinators:

Sh. Mahendra Sethi, PGT Computer Science, KV Suratgarh Cantt

Sh. Pankaj Singh, PGT Computer Science, KV Bharatpur

Sh. Ashish Kumar Joshi, PGT Computer Science, KV Baran

3 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N 2 0 2 1 - 2 2)

GROUP
NAME OF PGT COMPUTER
SCIENCE

NAME OF KV
WORK ASSIGNED FOR 3 DAYS
WORKSHOP

GROUP-1

MANISH SONI NO. 1 AFS SURATGARH Introduction to Python libraries- Pandas,
Matplotlib.
● Data structures in Pandas - Series and
data frames.Series: Creation of series
from
dictionary, scalar value; mathematical
operations; series attributes, head and tail
functions;
selection, indexing and slicing.

MS. KULDEEP KAUR NO.2 AFS JODHPUR

V D MEENA AVIKANAGAR

DR AJAY KUMAR GARG K V NO 3 NAL BIKANER

PRADEEP SWAMI

JHUNJHUNU

GROUP-2

VISHAL GOSWAMI NO1 BIKANER Data Frames: creation of data frames from
dictionary of series, list of dictionaries,
text/CSV
files, display, iteration. Operations on
rows and columns: add (insert /append) ,
select,
delete (drop column and row), rename,
Head and Tail functions, indexing using
labels,
Boolean indexing.

SATISH CHANDRA JANGIR KV NO. 3 JAIPUR

PRITHVI RAJ CHOUHAN KV NO.1 AFS JODHPUR

MRS. NIPUN KALRA WALIA K V NO 6 JAIPUR

RAJESH SUYAL

ITARANA

GROUP-3

NEHA TYAGI KV NO 3 JAIPUR
Data Visualization
● Data Visualization : Purpose of plotting,
drawing and saving of plots using
Matplotlib (line
plot, bar graph, histogram). Customizing
plots:; adding label, title, and legend in
plots.

MRS. MAMTA JAIN
BHILWARA

ADARSH BHATNAGAR KV NO.2, BIKANER

MR. AAKIB JAVED BSF JODHPUR

PREM PRAKASH MEENA ALWAR

GROUP-4

BIRBAL JAT DABLA
Digital footprint, net and communication
etiquettes,
● Data protection, intellectual property
rights (IPR), plagiarism, licensing and
copyright,
● Free and open source software (FOSS)

PANKAJ MEHRA KV JHALAWAR

P KACHHAWA KV NO 2 AJMER

SH VIJAY KUMAR GARG KV GANGAPUR CITY

PINKY KUMARI MEENA
KV NO2 ARMY JODHPUR

GROUP-5

AMIT KUMAR JAIN NO.4 JAIPUR
Cybercrime and cyber laws, hacking,
phishing, cyber bullying, overview of
Indian IT Act.
● E-waste: hazards and management.
Awareness about health concerns related
to the usage
of technology.

GHANSHYAM CHITARA AFS UTTARLAI

VIKRAM SINGH PAREVA KV CHITTORGARH

GAJRAJ MEENA KV KARAULI

KAVITA ACHARYA KV BANSWARA

GROUP-6

SANDEEP ARORA
KENDRIYA VIDYALAYA
NO.1 UDAIPUR

3 Sample Question Paper for
Term-I as per CBSE pattern

MR. ARVIND KUMAR KV NO. 1, JAIPUR
SH. P. R. GOLIA KV NASIRABAD

MRS. PREETI MEHARISHI KV AFS JAISALMER

VIJETA DARA NO 5 (I SHIFT) JAIPUR

GROUP-7

DILIP SINGH
BANAR JODHPUR

3 Sample Question Paper for
Term-I as per CBSE pattern

SH. PRAVEEN KUMAR YADAV
SAWAI MADHOPUR

USHA BENIWAL K V NO 2, JAIPUR

KRISHAN KUMAR KUMAWAT KV 1 AJMER

NAVNEET KENDRIYA VIDYALAYA
CHURU

4 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N 2 0 2 1 - 2 2)

Informatics Practices
CLASS XII

Term - 1 Distribution of Theory Marks

Unit No Unit Name Marks

1 Data Handling using
Pandas and Data

Visualization

25

4 Societal Impacts 10

 Total 35

Unit 1: Data Handling using Pandas and Data Visualization

 Data Handling using Pandas -I

● Introduction to Python libraries- Pandas, Matplotlib.

● Data structures in Pandas - Series and data frames.Series: Creation of series from dictionary, scalar value;

mathematical operations; series attributes, head and tail functions; selection, indexing and slicing.

● Data Frames: creation of data frames from dictionary of series, list of dictionaries, text/CSV files, display,

iteration. Operations on rows and columns: add (insert /append) , select, delete (drop column and row),

rename, Head and Tail functions, indexing using labels, Boolean indexing.

Data Visualization

● Data Visualization : Purpose of plotting, drawing and saving of plots using Matplotlib (line plot, bar graph,

histogram). Customizing plots:; adding label, title, and legend in plots.

Unit 4: Societal Impacts

 ● Digital footprint, net and communication etiquettes,

● Data protection, intellectual property rights (IPR), plagiarism, licensing and copyright,

 ● Free and open source software (FOSS),

● Cybercrime and cyber laws, hacking, phishing, cyber bullying, overview of Indian IT Act.

● E-waste: hazards and management. Awareness about health concerns related to the usage of technology.

INDEX:

S.No. Unit/ Topic Page No.

1 Python Pandas Series 5

2 Data Frame 10

3 Data Visualization 21

4 Societal Impact 26

5 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N 2 0 2 1 - 2 2)

Python Pandas Series & Data Frame

Python Pandas Series & DataFrame

Python Pandas:
Pandas is most popular library. It provides
various functions related to Scientific Data
analysis, like
Pandas is Python's library for data analysis.
Pandas has derived its name from PANel DAta
System. Pandas developed by Wes McKinney
• It can read and write different data formats like

int, float, double
• It can calculate data that is organized in row

and columns.
• It can select sub set of data values and merge

two data sets.
• It can support reshape of data values.
• It can support visualization library matplotlib.

Data Structure:
Pandas Data Structure is a way to store &
organize data values in a specific manner so that
various specific functions can be applied on
them. Examples- array, stack, queue, linked list,
series, DataFrame etc.

“Series” Vs “DataFrame”

Property Series DataFrame

Dimensions One-Dimensional Two-Dimensional

Types of
data

Homogenous
(In Series, all data
values should be of
same type)

Heterogeneous
(In DataFrame,
data values may
be of different
type)

Value
Mutable

Yes, Mutable Yes, Mutable

Size
Mutable

Size is Immutable.
Once the size of series
created, it cannot be
changed.
(If add/delete
element, then new
series object will be
created.)

Size is Mutable.
Once the size of
DataFrame
created, it can be
changed.

“Series” Data Structure:
A Series is a Pandas Data Structure that
represent 1–Dimensional array of indexed data.
The series structure contains two parts. It
requires to import pandas and numpy package.
1. An array of actual data values
2. An associated array of indexes (Used to access
data values)

Creation of Series:
A series of object can be created by using many
ways. Like
1. Creation of empty series by using Series()
2. Creation of non- empty series with Series()

1. Creation of empty series:
Syntax:
Series_object = pandas.Series()
S is capital in Series()
Example:
import pandas
Ser_obj1 = pandas.Series()
It will create an empty series of float type.

2. Creation of Non empty series
Syntax:
Series_object = pandas.Series(data, index=idx)
Where data is array of actual data value of series.
Index is any valid numpy datatype. Index can be
any type of following.
• A Python sequence
• An nd array
• A Python dictionary
• A scalar value
Example:
 Ser_obj2 = pandas.Series([1,3,5])
Output:
0 1
1 3
2 5
Ser_obj3 = pandas.Series([1.5,3.5,5.5])
Output:
0 1.5
1 3.5
2 5.5

Creation of Series for various Objects:
Series of List (Integer values)
import pandas as pd
S1=pd.Series([2,4,6])
print(“ Series of Object-1”)
print(S1)

Series of Object-1
0 2
1 4
2 6

Series of Tuple (Integer values)
import pandas as pd
S2=pd.Series((20,40,60))
print(“ Series of Object-2”)
print(S2)

Series of Object-2
0 20
1 40
2 60

Series of List (Character values)
import pandas as pd
S3=pd.Series([‘K’,’V’,’S’])
print(“ Series of Object-3”)
print(S3)

Series of Object-3
0 K
1 V
2 S

6 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Series of List (string value)
import pandas as pd
S4=pd.Series([“KVS JJN”])
print(“ Series of Object-4”)
print(S4)

Series of Object-4
0 KVS JJN

Series of List (String values)
import pandas as pd
S5=pd.Series([“KVS”,”JJN”])
print(“ Series of Object-5”)
print(S5)

Series of Object-5
0 KVS
1 JJN

Series of array using arange()

import pandas as pd
import numpy as np
nd1=np.arange(3, 13, 3.5)
S6=pd.Series(nd1)
print(“ Series of Object-6”)
print(S6)

Series of Object-6
0 3.0
1 6.5
2 10.0

Series of array using linspace()

import pandas as pd
import numpy as np
nd2=np.linspace(24, 64, 5)
S7=pd.Series(nd2)
print(“ Series of Object-7”)
print(S7)

Series of Object-7
0 24.0
1 34.0
2 44.0
3 54.0
4 64.0

Series of dictionary
import pandas as pd
import numpy as np
S8=pd.Series({‘Jan’:31,
‘Feb’:28,’Mar”:31})
print(“ Series of Object-8”)
print(S8)

Series of Object-8
Feb 28
Jan 31
Mar 31

Series using range()
import pandas as pd
S9=pd.Series(10,
index=range(0,3))
print(“ Series of Object-9”)
print(S9)

Series of Object-9
0 10
1 10
2 10

Series of scalar values using user defined
index
import pandas as pd
S11=pd.Series(20,
index=[‘Raj’,’PB’,’HR’])
print(“ Series of Object-11)
print(S11)

Series of Object-
11
Raj 20
PB 20
HR 20

Series of NaN (Not a Number) values
import pandas as pd
import numpy as np
S12=pd.Series([9.5,np.NaN,5.
5])

Series of Object-
12

0 9.5
1 NaN

print(“ Series of Object-12)
print(S12)

2 5.5

Series of None values
import pandas as pd
import numpy as np
S13=pd.Series([9.5,np.None,
5.5])
print(“ Series of Object-13)
print(S13)

Series of Object-
13

0 9.5
1 None
2 5.5

Series by using for loop
import pandas as pd
import numpy as np
ind=x for x in ‘ABCDE’
S15=pd.Series(range(1,15,3),
index=ind)
print(“ Series of Object-14)
print(S14)

Series of Object-
14
A 1
B 4
C 7
D 10
E 13

Series() Special examples
import pandas as pd
import numpy as np
arr=np.array([31,28,31,30])
day=['Jan','Feb','Mar','Apr']
S15=pd.Series(data=arr,inde
x=day, dtype=np.float64)
print("Series of Object-15")
print(S15)

Series of Object-
15
Jan 31.0
Feb 28.0
Mar 31.0
Apr 30.0

Series() Special examples
import pandas as pd
import numpy as np
a=np.arange(9,13)
S16=pd.Series(index=a,
data=a**2)
print("Series of Object-16")
print(S16)

Series of Object-
16
9 81
10 100
11 121
12 144

Series() Special examples
import pandas as pd
import numpy as np
lst=[9,10,11]
S17=pd.Series(data=lst*2)
print("Series of Object-17")
print(S17)

Series of Object-
17
0 9
1 10
2 11
3 9
4 10
5 11

Attributes of Series Object
Attribute Description
Series_object.
index

It show the indexes of series
object

Series_object.
values

It show the nd-array values of
series object

7 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Series_object.
dtype

It show the data types of data
values of series object

Series_object.
shape

It show tuple of shape
underlying data of series object

Series_object.
nbytes

It show the number of bytes of
underlying data of series object

Series_object.
ndim

It show the number of
dimensions of underlying data
of series object

Series_object.
size

It show the number elements in
series object

Series_object.
itemsize

It show the size of data type of
underlying data of series object

Series_object.
hasnans

It show True if there is NaN /
None value in Series, otherwise
returns False.

Series_object.
empty

It returns True if series is
empty, otherwise returns False.

Example with Attribute Output
Example of Series
import numpy as np
import pandas as pd
Ind=[‘Jan’,’Feb’,’Mar’,’Apr’]
Val=[31,28,31,30]
Sr_Obj=pd.Series(data=Val, index=Ind)

print(Sr_Obj.index) Index(['Jan', 'Feb',

'Mar', 'Apr'],
dtype='object')

print(Sr_Obj.values) [31 28 31 30]
print(Sr_Obj.dtype) int64
print(Sr_Obj.itemsize) 8
print(Sr_Obj.size) 4
print(Sr_Obj.ndim) 1
print(Sr_Obj.empty) False
print(Sr_Obj.hasnans) False
print(Sr_Obj.nbytes) 32
print(Sr_Obj.shape) (4,)

Accessing individual element of Series

Syntax: Series_Object[Valid index]
import numpy as np
import pandas as pd
Ind=[‘Jan’,’Feb’,’Mar’,’Apr’]
Val=[31,28,31,30]
Sr_Obj=pd.Series(data=Val, index=Ind)
print Whole series

print(Sr_Obj)

Jan 31
Feb 28
Mar 31

Apr 30
dtype: int64

print(Sr_Obj['Feb']) 28
print(Sr_Obj['Apr']) 30
Accessing Slice of Series
Slicing takes place position wise (built in Index)
and not the index wise in a series object.
Syntax: Series_Object[Start: End: Step]
Where,
Start is Lower Limit (default is 0)
End is Upper Limit
Step is updation (default is 1)
Note: slicing may be –ve also
print(Sr_Obj[1:3:1]) Feb 28

Mar 31
print(Sr_Obj[-1:-3:-1]) Apr 30

Mar 31
print(Sr_Obj[1::]) Feb 28

Mar 31
Apr 30

print(Sr_Obj[::1]) Jan 31
Feb 28
Mar 31
Apr 30

print(Sr_Obj[::-1]) Apr 30
Mar 31
Feb 28
Jan 31

Modifying Elements of of Series

Syntax: Series_Object[index / slice]= new value
Sr_Obj[1]=29
print(Sr_Obj)

Jan 31
Feb 29
Mar 31
Apr 30

Sr_Obj[:-3:-1]=31
print(Sr_Obj)

Change 31 in Last
2 place
Jan 31
Feb 29
Mar 31
Apr 31

print("Add New element
100")
Sr_Obj['May']=100
print(Sr_Obj)

Add New element
100
Jan 31
Feb 29
Mar 31
Apr 31
May 100

print("Delete Last index")
del Sr_Obj['May']
print(Sr_Obj)

Delete Last index
Jan 31
Feb 29

8 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Mar 31
Apr 31

print("Rename Index")
Sr_Obj.index=['J','F','M','A']
print(Sr_Obj)

Rename Index
J 31
F 29
M 31
A 31

head() and tail()

head() returns first n rows and tail() returns
last n rows from series.
If n is not given then by default it will return 5
rows.
Sytax:
Series_Object.head([n])
Series_Object.tail([n])
import numpy as np
import pandas as pd
Ind=['Jan','Feb','Mar','Apr','May','Jun','Jul']
Val=[31,28,31,30,31,30,31]
Sr_Obj=pd.Series(data=Val, index=Ind)

print("Display First 2
Rows")
print(Sr_Obj.head(2))

Display First 2 Rows
Jan 31
Feb 28

print("Display First 5
Rows")
print(Sr_Obj.head())

Display First 5 Rows
Jan 31
Feb 28
Mar 31
Apr 30
May 31

print("Display First 6
Rows")
print(Sr_Obj.head(6))

Display First 6 Rows
Jan 31
Feb 28
Mar 31
Apr 30
May 31
Jun 30

print("Display Last 2
Rows")
print(Sr_Obj.tail(2))

Display Last 2 Rows
Jun 30
Jul 31

print("Display Last 5
Rows")
print(Sr_Obj.tail())

Display Last 5 Rows
Mar 31
Apr 30
May 31
Jun 30
Jul 31

print("Display Last 6
Rows")

Display Last 6 Rows
Feb 28

print(Sr_Obj.tail(6)) Mar 31
Apr 30
May 31
Jun 30
Jul 31

Vector operations on Series Object
Similar to nd-array, the vector operations can be
applied on series object also. Scalar operation
mean, one operation can be applied to each
element of series object at a time.
import pandas as pd
import numpy as np
Sr_Obj=pd.Series(index=[‘A’ , ’B’ , ’C’ , ’D’],
data=[10,20,30,40])

print("Add 5 in each element of
Sr_Obj")
print(Sr_Obj+5)

Add 5 in each
element of
Sr_Obj
A 15
B 25
C 35
D 45

print("Multiply by 5 in each
element of Sr_Obj")
print(Sr_Obj*5)

Add 5 in each
element of
Sr_Obj
A 50
B 100
C 150
D 200

print("Divide 5 in each element
of Sr_Obj")
print(Sr_Obj/5)

Add 5 in each
element of
Sr_Obj
A 2.0
B 4.0
C 6.0
D 8.0

print(Sr_Obj>20) A False
B False
C True
D True

print("Sr_Obj**2")
print(Sr_Obj**2)

A 100
B 400
C 900
D 1600

#Adding two Series of similar indexes
import numpy as np
import pandas as pd
class11=pd.Series(data=[30,40,50],index=['scien
ce','arts','commerce'])
class12=pd.Series(data=[60,80,100],index=['scie
nce','arts','commerce'])

9 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

print("Total number of students")
print(class11+class12)

Output:
Total number of students
science 90
arts 120
commerce 150
#Adding two Series of dissimilar indexes
class11=pd.Series(data=[30,40,50],index=['scien
ce','arts','commerce'])
class12=pd.Series(data=[60,80,100],index=['sci',
'arts','commerce'])
print("Total number of students")
print(class11+class12)

Output:
Total number of students
arts 120.0
commerce 150.0
sci NaN
science NaN

Filtering Entries of Series
import pandas as pd
Info=pd.Series(data=[31,41,51])

print(“info>40\n”, info>40)

print(“info[info>40]\n”,
info[info>40])

info>40

0 False
1 True
2 True

info[info>40]
1 41
2 51

Sorting Series Values based on Values

import pandas as pd
import numpy as np
Sr_Obj=pd.Series(index=[‘A’ , ’B’ ,
’C’ , ’D’],
data=[200,400,300,100])
Sr_Obj.sort_values() OR
Sr_Obj.sort_values(ascending=
True)

D 100
A 200
C 300
B 400
(By default
order is
Ascending)

 Sr_Obj.sort_values(ascending=
False)

B 400
C 300
A 200

D 100

Sorting Series Values based on Indexes

Sr_Obj.sort_index() OR
Sr_Obj.sort_index(ascending=
True)

A 200
B 400
C 300
D 100

Sr_Obj.sort_index(ascending=
False)

D 100
C 300
B 400
A 200

Arithmetic on Series
import pandas as pd
import numpy as np
s1=pd.Series(data=[20,40,60],
index=['A','B','C'])
s2=pd.Series(data=[2,4,6],
index=['A','B','C'])
print("Addition of Series:
s1+s2")
print(s1+s2)

Addition of
Series-s1+s2:
A 22
B 44
C 66

print("Division of Series: s1/s2")
print(s1/s2)

Division of
Series: s1/s2
A 10.0
B 10.0
C 10.0

print("Addition of Series:
S3=s1+s2")
s3=s1+s2
print(s3)

Addition of
Series:
S3=s1+s2
A 22
B 44
C 66

NumPy Arrays Vs Series Object
1. In ndarray, vector operations can only be

performed if shape of both array match,
otherwise it will generate error.

2. In Series, vector operations can have
performed with different shapes series
also. For different shape series operation
gives NaN values.

3. In ndarray, the indexes always numeric
and start with 0 onwards. But in series,
indexes can have any type of indexes.

10 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

DATAFRAME –
A Data frame is a two- dimensional data

structure, i.e., data is aligned in a tabular

fashion in rows and columns.

Features are:

• Two-dimensional

• size-mutable &

• data mutable

• Contains heterogeneous data

• Contains rows and columns index

• The DataFrame contains labelled axes (rows

or axis = 0 and columns or axis = 1).

• All elements within a single column have the

same data type, but different columns can have

different data types.

Have a look to know the 2- D form

representation of a DataFrame -

Row ↓
Column
↓
Roll /0

Column ↓
Name/1

Column
↓
Mark /2

FIRST/0 D[0][0] D[0][1] D[0][2]

SECOND/1 D[1][0] D[1][1] D[1][2]

THIRD/2 D[2][0] D[2][1] D[2][2]

For using the DataFrame object we must import

the pandas library as below:

import pandas OR import pandas as

ALIAS-NAME

Creating a DataFrame
Mainly DataFrame() function of pandas library

is used. There are different ways of creating a

DataFrame using -

A - Empty DataFrame

Let us learn with help of an example to create

and print a DataFrame.

import pandas

DF = pandas.DataFrame()

print(DF)

OUTPUT –

B - Dictionary of Series

Example 1 –

s = pandas.Series(100 , index =['a','b','c','d'])

print(s)

df = pandas.DataFrame(s)

print(df)

OUTPUT –

Since DataFrames are two-dimensional, to

create DataFrame from Series, we can also take

two or more Series objects to create a

DataFrame.

Example 2 –

import pandas

roll = pandas.Series([10, 12, 13, 16])

name = pandas.Series(['Aruna', 'Kavita',

'Gaurav','Sumit'])

DF = pandas.DataFrame({ 'Roll_No' : roll ,

'SName' : name })

print(DF)

OUTPUT –

Example 3 –

import pandas

s1 = pandas.Series({ 101 : 'Amit', 102 : 'Anita',

103:'Geetu', 105:'Jatin'})

s2 = pandas.Series({ 101 : 93 , 102 : 87 , 103 :

82 , 104 : 93 , 105 : 90 })

dfs = pandas.DataFrame({'Name' : s1 , 'Marks' :

s2 })

print("Series 1")

print(s1)

print("Series 2")

print(s2)

print("data frame from the above series ")

print(dfs)

11 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

C - List of Dictionary

Recall that dictionary is of the form { key1 :

value1 , key2 : value2 , - - - }

The keys of the dictionary become the column

names in the DataFrame object and the values

of the dictionary become the column-values of

the DataFrame object

Example 1–

import pandas
d1 = { 'roll' : 101 , 'name' : 'Astha' , 'tot_mark' : 456 }

d2 = {'roll' : 104 , 'name' : 'Gautam', 'tot_mark' : 478 }

d3 = {'roll' : 105 , 'name' : 'Deepika', 'tot_mark' : 453 ,

'grade' : 'A2' }

L = [d1 , d2, d3]

df_list = pandas.DataFrame(L)

print("Data Frame from list of dictionaries ")

print(df_list)

OUTPUT –

As shown in the output, NaN (Not a Number) is

automatically added for missing places.

Example 2 –

Instead of the default row labels: 0, 1, 2, 3, … we

can specify our own row labels by using the

index=[list_of _row_labels] parameters in the

DataFrame() function.

import pandas

L = [{'roll' : 101 , 'name' : 'Astha' } ,\

 {'roll' : 104 , 'name' : 'Gautam', 'mark' : 478}

]

DF = pandas.DataFrame(L , index= ['s1' , 's2'])

print("DataFrame from List of Dictionaries with

Row-Index")

print(DF)

OUTPUT –

Example 3 –

We can also use the index=[list_of_row_labels]

and columns=[list_of_column_labels] to specify

the row index as well as the column index

Example 3, dataframe from a list of dictionaries

with row index & column index

import pandas
L = [{'roll' : 101 , 'name' : 'Astha' } ,\

 {'roll' : 104 , 'name' : 'Gautam', 'mark' : 478}]

DF = pandas.DataFrame(L , index= ['s1' , 's2'] ,

columns =['roll' , 'name'])

#note , here column 'mark' is skipped

print("First DataFrame")

print(DF)

DF2 = pandas.DataFrame(L , index= ['s1','s2'] ,

columns=['roll' , 'name' , 'age'])

#Here, column 'age' is additonal column, which

does not exist in List of Dictionary

print("Second DataFrame is")

print(DF2)

OUTPUT –

D - Text/CSV Files -

A CSV (Comma Separated Values) file can be

imported directly to a DataFrame object

using the read_csv() method.

Simple form of Syntax is –

<data-frame-name> = read_csv(<file-name-

path>)

Let us take a csv file named “stu_result.csv” as

below -

12 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Adm_N
o

Name Class Marks

1201 Aniket Sharma XII 83

1203 Anita Gupta XII 91

1206 Gautam Kumar XI 89

1207 Mahesh Singh XII 94

1209 Pratik Mehra XI 90

1214 Nikita Verma XII 92

Example 1 –

#read the csv file in a DataFrame –

import pandas as pp

pp = alias-name of pandas library

sdf =

pp.read_csv("D:/CPP/python_practice/stu_resu

lt.csv")

#OR, read_csv("stu_result.csv"), if file is in same

folder as our program

print(sdf)

OUTPUT –

The read_csv() method has many parameters to

control the kind of data imported to create the

DataFrame.

Example 2 –

To show the shape (number of rows and

columns) of CSV file imported in a DataFrame

r ,c = sdf.shape

print("\nTotal rows", r, "Total columns", c)

OUTPUT –

Similary, we can use <data-frame>.size to find

number of values of DataFrame

Example 3 –

To read CSV file with specific / selected columns

#usecols = to display selected columns only

DF3 = pp.read_csv("stu_result.csv", usecols =

['Adm_No' , 'Name', 'Class'])

print("\nDataFrame is\n", DF3)

OUTPUT –

Example 4 –

To read CSV file with specific / selected rows

#nrows = we will use to display only first four

records

DF = pp.read_csv("stu_result.csv", nrows = 4)

print("\nFirst four records of DataFrame \n ",

DF)

OUTPUT –

Example 5 –

To read CSV file without header

header = to omit(None) the display of

headings of columns

DH = pp.read_csv("stu_result.csv", header =

None)

print("The DataFrame is\n", DH)

OUTPUT –

Example 6 –

To read CSV file without index

#when we do not want to display the row

indices
df2 = pp.read_csv("stu_result.csv", index_col = 0)
print(df2)

13 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

OUTPUT –

Here, Adm_No will be the first column instead of

indices.

Example 7 –

To read CSV file with new column names

#to use different names of column from default

data, use skiprows along-with names

DF = pp.read_csv("stu_result.csv", skiprows =1 ,

names = ['StuNo' , 'SName', 'SClass','T_Marks'])

print('DataFrame\n', DF)

OUTPUT –

Display/Iteration of DataFrame:-
import pandas as pd
L1=[1,2,3,4,5]
L2=[10,20,30,40,50]
df=pd.DataFrame ([L1,L2],columns=[
'a','b','c','d','e'])
print(df) # display entire DataFrame
Output:
 a b c d e

0 1 2 3 4 5
1 10 20 30 40 50

Display columns
print(df['a']) # display data of particular
column (column a)
Output:

0 1
1 10
Name: a, dtype: int64

print(df[['a','c','e']]) # display data of
multiple columns (columns a,c and e)
Output:

 a c e
0 1 3 5
1 10 30 50

Display rows using loc method:-
Syntax-
<DataFrame
object>.loc[<startrow>:<endrow>,<startcolum
n>:<endcolumn>]

Examples:
print(df.loc[1]) # display data of particular
single row (row 1)
Output:

a 10
b 20
c 30
d 40
e 50
Name: 1, dtype: int64

print(df.loc[0:1]) #display data of
multiple rows by using slicing(rows 0 and 1)
Output:

a b c d e
 0 1 2 3 4 5
 1 10 20 30 40 50

print(df.loc([0:1,’a’] # display data of
multiple rows with single column by using
slicing
 Output: (rows 0,1 and column a)

0 1
1 10
Name: a, dtype: int64

print(df.loc[0:1,’a’:’c’]) # display
data of multiple rows with multiple columns
using slicing method(rows 0,1 and columns
a,b,c)
Output:

a b c
 0 1 2 3
 1 10 20 30
Display rows using iloc method:-
This method is used when DataFrame object
does not have row and column labels or even
we may not remember them. It works on
numeric index.
Syntax:-
<DataFrame
object>.iloc[<startrowindex>:<endrowindex>,<
startcolumnindex>:<endcolumnindex>]

14 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Examples:
print(df.iloc[0:2,1:3]) # display rows exist
on index 0,1 and columns exist on index 1,2

Output:

b c
 0 2 3
 1 20 30
print(df.iloc[0:2,:]) # display rows exist on
index 0,1 with all columns
Output:

 a b c d e
0 1 2 3 4 5

2 10 20 30 40 50
Difference between loc and iloc method:-

In loc method both start label and end label
are included but in iloc method end index is
excluded when given as strat:end.
Operations on rows and columns in

DataFrames:-We can perform some basic

operations on rows and columns of a DataFrame
like selection, deletion, addition, and renaming

import pandas as pd

dict={ 'Arnab': pd.Series([90, 91, 97],

index=['Maths','Science','Hindi']),

'Ramit': pd.Series([92, 81, 96],

index=['Maths','Science','Hindi']),

'Samridhi': pd.Series([89, 91, 88],
index=['Maths','Science','Hindi']),

'Riya': pd.Series([81, 71, 67],
index=['Maths','Science','Hindi']),

'Mallika': pd.Series([94, 95, 99],

index=['Maths','Science','Hindi']) }

ResultDF = pd.DataFrame(dict)

print(ResultDF)

Output:

Arnab RamitSamridhi Riya Mallika

Maths 90 92 89 81 94

Science 91 81 91 71 95

Hindi 97 96 88 67 99

>>>

Adding a New Column to a DataFrame: To

add a new column to a DataFrameResultDFwe
can write the following statement:

>>>ResultDF['Radha']=[89,78,76]
Or
ResultDF.loc[:,'Radha']=[89,78,76]
Or
ResultDF.at[:,'Radha']=[89,78,76]
>>>print(ResultDF)
or
Output:-

Arnab RamitSamridhi Riya

Mallika Radha

Maths 90 92 89 81 94 89

Science 91 81 91 71 95 78

Hindi 97 96 88 67 99 76

Note: Assigning values to a new column label

that does not exist will create a new column

at the end If already exists then the

assignment statement will update the values
of the already existing column

Example :
ResultDF['Ramit']=[99, 98, 78]
>>>print(ResultDF)
Output:
Arnab RamitSamridhi Riya Mallika Radha
Maths 90 99 89 81 94 89
Science 91 98 91 71 95 78
Hindi 97 78 88 67 99 76
Adding a New Row to a DataFrame: To add a
new row to a DataFrame we can use the
DataFrame.loc[] method.
Suppose we want to add English marks in

above DataFrame, we can write the following

statement:

ResultDF.loc['English'] = [85, 86, 83, 80, 90, 89]
>>>print(ResultDF)
Or
ResultDF.at['English'] = [85, 86, 83, 80, 90, 89]
>>>print(ResultDF)
Output:

Arnab RamitSamridhi Riya Mallika
Radha
Maths 90 99 89 81 94 89

Science 91 98 91 71 95 78

15 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Hindi 97 78 88 67 99 76

English 85 86 83 80 90 89

DataFrame.loc[] method can also be used to

change the data values of a row to a particular
value.

Example: to set marks in 'Maths' for all
columns to 0:
>>>ResultDF.loc['Maths']=0
>>>print(ResultDF)
Output:

Arnab RamitSamridhi Riya Mallika
Radha
 Maths 0 0 0 0 0 0
Science 91 98 91 71 95 78
Hindi 97 78 88 67 99 76
English 85 86 83 80 90 89
>>>ResultDF[:] = 0 # Set all values in
ResultDF to 0
>>>ResultDF

Arnab Ramit Samridhi Riya
Mallika Radha

Maths 0 0 0 0 0 0

 0

Science 0 0 0 0 0 0

 0

Hindi 0 0 0 0 0

 0 0

English 0 0 0 0 0

 0 0

Selecting / Accessing Data from DataFrame :

DataFrame : DF5

 Population Hospital Schools

Delhi 10927986 189 7916

Mumbai 12691836 208 8508

Kolkata 4631392 149 7226

Selecting / Accessing a column: Just use the
following syntax

<DF_object>[column_name] or

<DF_object>.<column_name>

Example : >>>DF5[‘Population’] or
>>>DF5.Population

Output:-

Delhi 10927986

Mumbai 12691836

Kolkata 4631392

Selecting / Accessing multiple columns: Just
use the following syntax

<DF_object>[[<column_name1>,<column_name

2>,<column_name3>......]]

Example : >>>DF5[[‘Population’, ‘Hospital’]]

Output:- Population Hospital

Delhi 10927986 189

Mumbai 12691836 208

Kolkata 4631392 149

Selecting /Accessing a subset from a

DataFrame using Row / Column Names: Use

the following syntax :-

<DF_object>.loc[<start_row>:<end_row>,<start
_column>:<end_column>]

or

<DF_object>.iloc[<start_row_index>:<end_row_

index>,<start_column_index>:<end_column_ind

ex>]

Example 1.>>>DF5.loc[‘Mumbai’:’Kolkata’ , :]

Output:

 Population Hospital Schools

Mumbai 12691836 208 8508

Example 2. >>>DF5.iloc[0:2,0:2]

Output: -

Population Hospital

Delhi 10927986 189

Mumbai 12691836 208

Deleting Rows or Columns from a

DataFrame: DataFrame.drop() method is used

to delete rows and columns from a DataFrame.

To delete a row set the parameter axis=0 and

16 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

for deleting a column set axis=1. Consider the

following DataFrame:

Arnab RamitSamridhi Riya Mallika

Radha

Maths 90 99 89 81 94 89

Science 91 98 91 71 95 78

Hindi 97 78 88 67 99 76

English 85 86 83 80 90 89

To delete the row with label 'Science' we can

write the following statement:

>>>ResultDF = ResultDF.drop('Science',
axis=0)

>>>ResultDF

Output : Arnab RamitSamridhi Riya Mallika Radha

Maths 90 99 89 81 94 89

Hindi 97 78 88 67 99 76

English 85 86 83 80 90 89

To delete the columns having labels 'Samridhi',

'Ramit' and 'Riya': we can write the following
statement:-

>>>ResultDF =

ResultDF.drop(['Samridhi','Ramit','Riya'],
axis=1)

>>>ResultDF

Output:Arnab Mallika Radha

Maths 90 94 89

Hindi 97 99 76

English 85 90 89

Renaming Row Labels of a DataFrame:

DataFrame.rename() method is used to rename

the row and column label. To rename the row

indices Maths to sub1, Hindi to sub2 in above

DataFrame we can write the following
statement:-

ResultDF=ResultDF.rename({'Maths':'Sub1',

‘Hindi':'Sub2'}, axis='index')

Print(ResultDF)

Output: Arnab Mallika Radha

Sub1 90 94 89

Sub2 97 99 76

English 85 90 89

Note: The parameter axis='index' is used to

specify that the row label is to be

changed and axis='columns' to specify
that the column label is to be changed

Renaming Column Labels of a DataFrame:

ResultDF=ResultDF.rename({'Arnab':'Student1

','Mallika':'Student2','Radha':'Student3'},

axis='columns’)

>>>print(ResultDF)

Output: Student1 Student2 Student3

Sub1 90 94 89

Sub2 97 99 76

English 85 90 89

>>>

Operations on rows and columns in

DataFrames:-We can perform some basic

operations on rows and columns of a

DataFrame like selection, deletion, addition,
and renaming

import pandas as pd

dict={ 'Arnab': pd.Series([90, 91, 97],

index=['Maths','Science','Hindi']),

'Ramit': pd.Series([92, 81, 96],

index=['Maths','Science','Hindi']),

'Samridhi': pd.Series([89, 91, 88],
index=['Maths','Science','Hindi']),

'Riya': pd.Series([81, 71, 67],

index=['Maths','Science','Hindi']),

'Mallika': pd.Series([94, 95, 99],

index=['Maths','Science','Hindi']) }

ResultDF = pd.DataFrame(dict)

print(ResultDF)

17 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Output:

Arnab RamitSamridhi Riya Mallika

Maths 90 92 89 81 94

Science 91 81 91 71 95

Hindi 97 96 88 67 99

>>>

Adding a New Column to a DataFrame: To

add a new column to a DataFrameResultDFwe
can write the following statement:

>>>ResultDF['Radha']=[89,78,76]

Or

ResultDF.loc[:,'Radha']=[89,78,76]

Or

ResultDF.at[:,'Radha']=[89,78,76]

>>>print(ResultDF)

or

Output:-

Arnab RamitSamridhi Riya Mallika Radha

Maths 90 92 89 81 94 89

Science 91 81 91 71 95 78

Hindi 97 96 88 67 99 76

Note: Assigning values to a new column label

that does not exist will create a new column at

the end If already exists then the assignment

statement will update the values of the already
existing column

Example :

ResultDF['Ramit']=[99, 98, 78]

>>>print(ResultDF)

Output:

Arnab Ramit Samridhi Riya Mallika Radha

Maths 90 99 89 81 94 89

Science 91 98 91 71 95 78

Hindi 97 78 88 67 99 76

Adding a New Row to a DataFrame: To add a

new row to a DataFramewe can use the
DataFrame.loc[] method.

Suppose we want to add English marks in

above DataFrame, we can write the following
statement:

ResultDF.loc['English'] = [85, 86, 83, 80, 90, 89]

>>>print(ResultDF)

Or

ResultDF.at['English'] = [85, 86, 83, 80, 90, 89]

>>>print(ResultDF)

Output:

Arnab RamitSamridhi Riya Mallika
Radha

Maths 90 99 89 81 94 89

Science 91 98 91 71 95 78

Hindi 97 78 88 67 99 76

English 85 86 83 80 90 89

DataFrame.loc[] method can also be used to

change the data values of a row to a particular
value.

Example: to set marks in 'Maths' for all

columns to 0:

>>>ResultDF.loc['Maths']=0

>>>print(ResultDF)

Output:

Arnab RamitSamridhi Riya Mallika Radha

 Maths 0 0 0 0 0 0

Science 91 98 91 71 95 78

Hindi 97 78 88 67 99 76

English 85 86 83 80 90 89

>>>ResultDF[:] = 0 # Set all values in
ResultDF to 0

>>>ResultDF

Arnab Ramit Samridhi Riya

Mallika Radha

18 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Maths 0 0 0 0 0 0 0

Science 0 0 0 0 0 0 0

 Hindi 0 0 0 0 0 0

 0

English 0 0 0 0 0 0 0

Selecting / Accessing Data from DataFrame :

DataFrame : DF5

 Population Hospital Schools

Delhi 10927986 189 7916

Mumbai 12691836 208 8508

Kolkata 4631392 149 7226

Selecting / Accessing a column: Just use the

following syntax

<DF_object>[column_name] or

<DF_object>.<column_name>

Example : >>>DF5[‘Population’] or
>>>DF5.Population

Output:-

Delhi 10927986

Mumbai 12691836

Kolkata 4631392

Selecting / Accessing multiple columns: Just

use the following syntax

<DF_object>[[<column_name1>,<column_name
2>,<column_name3>......]]

Example : >>>DF5[[‘Population’, ‘Hospital’]]

Output:- Population Hospital

Delhi 10927986 189

Mumbai 12691836 208

Kolkata 4631392 149

Selecting /Accessing a subset from a

DataFrame using Row / Column Names: Use

the following syntax :-

<DF_object>.loc[<start_row>:<end_row>,<start

_column>:<end_column>]

or

<DF_object>.iloc[<start_row_index>:<end_row_

index>,<start_column_index>:<end_column_ind

ex>]

Example 1.>>>DF5.loc[‘Mumbai’:’Kolkata’ , :]

Output:

 Population Hospital Schools

Mumbai 12691836 208 8508

Example 2. >>>DF5.iloc[0:2,0:2]

Output: -

Population Hospital

Delhi 10927986 189

Mumbai 12691836 208

Deleting Rows or Columns from a

DataFrame: DataFrame.drop() method is used

to delete rows and columns from a DataFrame.

To delete a row set the parameter axis=0 and for

deleting a column set axis=1. Consider the
following DataFrame:

Arnab RamitSamridhi Riya Mallika

Radha

Maths 90 99 89 81 94 89

Science 91 98 91 71 95 78

Hindi 97 78 88 67 99 76

English 85 86 83 80 90 89

To delete the row with label 'Science' we can
write the following statement:

>>>ResultDF = ResultDF.drop('Science',

axis=0)

>>>ResultDF

Output : Arnab RamitSamridhi Riya Mallika

Radha

Maths 90 99 89 81 94

89

19 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Hindi 97 78 88 67 99

76

English 85 86 83 80 90

89

To delete the columns having labels 'Samridhi',
'Ramit' and 'Riya': we can write the following
statement:-
>>>ResultDF =
ResultDF.drop(['Samridhi','Ramit','Riya'],
axis=1)
>>>ResultDF
Output:Arnab Mallika Radha
Maths 90 94 89
Hindi 97 99 76
English 85 90 89

Renaming Row Labels of a DataFrame:

DataFrame.rename() method is used to rename

the row and column label. To rename the row

indices Maths to sub1, Hindi to sub2 in above

DataFrame we can write the following

statement:-

ResultDF=ResultDF.rename({'Maths':'Sub1',
‘Hindi':'Sub2'}, axis='index')

Print(ResultDF)

Output: Arnab Mallika Radha

Sub1 90 94 89

Sub2 97 99 76

English 85 90 89

Note: The parameter axis='index' is used to

specify that the row label is to be

changed and axis='columns' to specify
that the column label is to be changed

Renaming Column Labels of a DataFrame:

ResultDF=ResultDF.rename({'Arnab':'Student1

','Mallika':'Student2','Radha':'Student3'},

axis='columns’)

>>>print(ResultDF)

Output: Student1 Student2 Student3

Sub1 90 94 89

Sub2 97 99 76

English 85 90 89

>>>

Indexing and Boolean indexing:-

In Boolean indexing, we select data based on the actual values of the data and not on their row/column
labels or integer locations. If we provide list of Boolean values as index then only those rows will be
selected where True is stored. Consider following code for the df1

 Hindi English IP
Aditya 34 23 67
Aman 34 85 56
Rajesh 60 80 91
Mohit 45 21 32

print(df1[[True,False,False,True]])

OUTPUT

 Hindi English IP
Aditya 34 23 67
Mohit 45 21 32

20 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Consider the following command df1[‘English’]>50 is will result a Series of False, True, True, False, so
this Boolean expression can be used as index, hence df1[df1[‘English’]>50] will select the rows where
English marks are more than 50.
 OUTPUT

 Hindi English IP
Aman 34 85 56
Rajesh 60 80 91

Find the details of student who secured 34 marks in Hindi
 df1[‘Hindi’]==34 will result Series of [True,True,False,False]
so df1[df1[‘Hindi’]==34] will select the rows where 34 marks is stored in Hindi
 OUTPUT

 Hindi English IP
Aditya 34 23 67

Aman 34 85 56
Find the details of student who secured marks is IP subject which is more than average marks
of IP subject
df1[‘IP’].mean() will return average marks for IP which is 61.5
so df1[‘IP’]>df1[‘IP’].mean() will return Series of [True,False,True,False]
So this code can be used as index to get desired result
Hence df1[df1[‘IP’]>df1[‘IP’].mean()]
output

 Hindi English IP
Aditya 34 23 67
Rajesh 60 80 91

We can include specific column(s) in our output in two ways
To display only IP column in place of all columns we can modify above code as given below
df1[‘IP’][df1[‘IP’]>df1[‘IP’].mean()]
 OR
df1[df1[‘IP’]>df1[‘IP’].mean()][‘IP’]

Output
Aditya 67
Rajesh 91
Name:IP, dtype: int64
If Hindi and IP marks to be displayed for the same problem stated above the code will be

df1[[‘Hindi’,‘IP’]][df1[‘IP’]>df1[‘IP’].mean()]
 OR
df1[df1[‘IP’]>df1[‘IP’].mean()][[‘Hindi’,‘IP’]]

output

 Hindi IP
Aditya 34 67
Rajesh 60 91

21 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Data Visualization: -

Data Visualization
• Data Visualization refers to the graphical or visual representation of data and information using

visual elements like charts, graphs, maps etc.
• Data visualization is the discipline of trying to expose the data to understand it by placing it in a visual

context.
• Its main goal is to distill large datasets into visual graphics to allow for easy understanding of

complex relationships within the data.

Purpose of Data visualization
• Better analysis
• Quick action
• Identifying patterns
• Finding errors
• Understanding the story
• Exploring business insights
• Grasping the latest trends plotting library

Anatomy of a Chart

Introduction to matplotlib
• matplotlib.pyplot is a collection of functions

for 2D plotting.
• Some of the types of plots: Line, Bar,

Histogram, Pie and Boxplot.

Matplotlib – pyplot features
 PyPlot is a collection of methods within
matplotlib library of python which allows

users to construct 2D plots easily and
interactively.
 Drawing – plots can be drawn based on
passed data through specific functions.
 Customization – plots can be customized as
per requirement after specifying it in the
arguments of the functions. Like color, style
(dashed, dotted), width; adding label, title,
and legend in plots can be customized.

22 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

 Saving – After drawing and customization
plots can be saved for future use.
 Figure: Pyplot by default plots every chart
into an area called Figure. A figure contains
other elements of the plot in it.
 Axes: The axes define the area (mostly

rectangular in shape for simple plots) on
which actual plot (line or bar or graph etc.)
will appear. Axes have properties like label,
limits and tick marks on them.

There are two axes in a plot:
(i) X-axis the horizontal axis,
ii) Y – axis the vertical axis
a) Axis Label: It defines the name for an axis. It
is individually defined for X– axis and Y–axis
each.
b) Limits: These define the range of values and
number of values marked on X–axis and Y – axis.
c) Tick_Marks: The tick marks are individual
point marked on the X – axis or Y – axis.
 Title: This is the text that appears on the top of
the plot. It defines what the chart is about.
Legends: These are different colors that identify
different sets of data plotted on the plot. The
legends are shown in a corner of the plot. We use
legend as following types:
plt.legend (loc="upper left") or
plt.legend (loc=2)
E.g.

To import the library for plotting
import matplotlib.pyplot as pl
Basic steps to follow while plotting:
(a) Choose appropriate plot type and then the
function
• Line plot: plot ()
• Bar plot: bar () and barh()
• Histogram: hist ()
(b) Understand the data and assign the legend
values

• assign the axis labels
• assign plot title

Different color codes:

Line Plot:
Definition: A line plot/chart is a graph that
shows the frequency of data occurring along a
number line.
Eg.
import matplotlib.pyplot as pl
x = [2,4,6,3,8]
y = [42, 45, 21, 11, 32]
pl.plot(x, y,'r', label = "Sales", linewidth =
4,color=’cyan’)
pl.title ("Test Plot", loc="right")
pl.xlabel ("X - AXIS")
pl.ylabel ("Y - AXIS")
pl.legend ()
pl.show ()

Multiple line plots
In this we will take help of two plot functions to
make comparison between two line plots.
E.g.
import numpy as np
import matplotlib.pyplot as plt
year = [2017, 2018, 2019, 2020, 2021]
Sciencepasspercentage = [90, 92, 94, 95, 97]
commercepasspercentage = [89, 91, 93, 95, 98]
plt.plot (year, Sciencepasspercentage,
color='red')
plt.plot (year, commercepasspercentage,
color='green')

23 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

plt.xlabel ('Year')
plt.ylabel ('Pass percentage')
plt.title ('KV Alwar Science vs Commerce PASS
% till 2021')
plt.show ()

Or

Eg.
import matplotlib.pyplot as plt
year = [2016, 2017, 2018, 2019, 2020]
Indianavgscore = [302,305,290,301,312]
Englandavgscore = [310,287,306,296,320]
plt.plot (year, Indianavgscore, color='red',
marker='s', label='India')
plt.plot (year, Englandavgscore, color='green',
marker='*', label='England')
plt.xlabel ('Countries')
plt.ylabel('Avg Score in Cricket Match for that
year')
plt.title ('India vs England avg. Score
comparison')
plt.legend ()
plt.show ()

To change the line style
We can add following additional optional
argument in plot (): linestyle or ls = [‘solid’ |
‘dashed’ | ‘dashdot’ | ‘dotted’]
If we apply the customization for line style in
above example then, we will apply the linestyle
type in both the plot statements.

E.g.
▪ plt.plot (year, Indianavgscore,

color='red', marker='s',
label='India’,linestyle='dashed')

▪ plt.plot (year, Englandavgscore,
color='green', marker='*',
label='England’, linestyle='dotted')

Bar Plot:
Definition: A graph drawn using rectangular
bars to show how large each value is. The bars
can be horizontal or vertical. E.g.
import matplotlib.pyplot as pl
x = ['English','Hindi','Maths','Science','SST']
y = [34, 54, 41, 44, 37]
pl.bar (x, y, width =0.8, label= "Marks",
color='red', edgecolor="black")
pl.title ("Marks of 5 subjects of a Student",
loc="right")
pl.xlabel ("Subject")
pl.ylabel ("Marks")
pl.legend ()
pl.show ()

Note: – use barh () for creating horizontal bar
graphs. If we apply the barh() in above example,
then following figure will be appeared:

24 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Multiple Bar Plots
Eg.
import matplotlib.pyplot as plt
from matplotlib.dates import date2num
import datetime
x = [datetime.datetime (2011, 1, 4, 0, 0),
 datetime.datetime (2011, 1, 5, 0, 0),
 datetime.datetime (2011, 1, 6, 0, 0)]
x = date2num(x)
y = [4, 9, 2]
z = [1, 2, 3]
k = [11, 12, 13]
ax = plt.subplot (111)
ax.bar(x-0.2, y, width=0.2, color='cyan',
align='center')
ax.bar(x, z, width=0.2, color='magenta',
align='center')
ax.bar(x+0.2, k, width=0.2, color='brown',
align='center')
ax.xaxis_date()
plt.show ()

or

E.g.-We can also use arange() function to
generate the data.
 import matplotlib.pyplot as plt

import numpy as np
label = ['Prem', 'Prakash', 'Meena', 'Raj', 'Saket',
'Sulachna']
per = [94, 85, 45, 25, 50, 54]
index = np.arange (len(label))
clr=['g', 'b','r', 'cyan', 'magenta','y']
plt.bar (index, per, color=clr)
plt.xlabel ('Student Name', fontsize=5)
plt.ylabel ('Percentage', fontsize=5)
plt.xticks (index, label, fontsize=5, rotation=30)
plt.title ('Percentage of Marks achieve by
student Class XII')
plt.show ()

Histogram:
A histogram is a graphical representation which
organizes a group of data points into user-
specified ranges.
histtype: [‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’],
It is optional by default is ‘bar’ orientation:
[‘vertical’, ’horizontal’]
Eg.
import matplotlib.pyplot as pl
import numpy as np
math=
[12,23,45,56,57,67,72,83,65,22,87,53,12,90,78,
83, 45, 75, 37,28]
x = np.arange (len(math))
freq, bin, patches = pl.hist (math,
bins=10,color='red',edgecolor = "black", label =
"Math marks")
pl.title ("Performance of students", loc="right")
pl.xlabel ("Mark in Maths")
pl.ylabel ("Number of students")
pl.legend ()
pl.show ()

25 | K V S R E G I O N A L O F F I C E , J A I P U R | S U B J E C T - I N F O R M A T I C S P R A C T I C E S (T E R M - I S E S S I O N
2 0 2 1 - 2 2)

Or
Eg.
import matplotlib.pyplot as plt
ages=[2,5,70,40,30,45,50,45,43,40,44,60,7,13,57
,18,90,77,32,21,20,40]
range = (0, 100)
bins = 10
plt.hist(ages, bins, range, color = 'cyan', histtype
= 'bar', rwidth = 0.8)
plt.xlabel ('age')
plt.ylabel ('No. of people')
plt.title ('My histogram')
plt.show ()

Save Plot:
To save any plot we have to use savefig()
function E.g. plt.savefig ("plot.png")
Here plot.png is the name of the file where plot
is saved. Eg.
plt.savefig ('Student_Data.pdf')
plt.savefig ('Student_Data.svg')
plt.savefig ('Student_Data.png')

plt.savefig ('line_plot.jpg', dpi=400, quality=60,
optimize=True, progressive=True)

Example of Save Plot with full path
pl.savefig('F:\line_plot.png')
here the figure will be saved in F drive with
name lineplot of Computer System.

 26 | K V S – R e g i o n a l O f f i c e , J A I P U R | S e s s i o n 2 0 2 1 - 2 2

Societal Impact (Marks-10)

Digital Footprint

A digital footprint, sometimes called digital

dossier is a body of data that you create while

using the Internet. It includes the websites you

visit, emails you send, and information you submit

to online services and can be traced back by an

individual.

It is of two types:
1. Passive digital footprints
2. Active digital footprints
• A passive digital footprint is created

when data is collected without the owner
knowing. A more personal aspect of your
passive digital footprint is your search
history, which is saved by some search
engines while you are logged in.

• Active digital footprints are created
when a user, for the purpose of sharing
information about oneself by means of websites
or social media, deliberately. An "active digital
footprint" includes data that you intentionally
submit online. Sending an email contributes to
your active digital footprint, since you expect the
data be seen and/or saved by another person.
The more email you send, the more your digital
footprint grows.

Publishing a blog and posting social media

updates are another popular ways to expand

your digital footprint. Every tweet you post on

Twitter, every status update you publish on

Facebook, and every photo you share on
Instagram contributes to your digital footprint.

How to reduce the footprint?

1.Double-check privacy settings

2.Logout after you’re done surfing a website

3.Think before putting anything online/public

platform

4. Don’s post personal information online

Net and Communication Etiquettes

Netiquette is short for "Internet etiquette." Just

like etiquette is a code of polite behaviour in

society, netiquette is a code of good behaviour on

the Internet. This includes several aspects of the

Internet, such as email, social media, online chat,

web forums, website comments, multiplayer

gaming, and other types of online

communication. While there is no official list of

netiquette rules or guidelines, the general idea is

to respect others online.

Below are some examples of rules to follow for
good netiquette:

• Avoid posting inflammatory or offensive
comments online.

• Respect others' privacy by not sharing
personal information, photos, or videos
that another person may not want
published online.

• Never spam others by sending large
amounts of unsolicited email.

• Show good sportsmanship when playing
online games, whether you win or lose.

• Don't troll people in web forums or website
comments by repeatedly nagging or
annoying them.

• Stick to the topic when posting in online
forums or when commenting on photos
or videos, such as YouTube or Facebook
comments.

• Don't swear or use offensive language.

• Avoid replying to negative comments
with more negative comments. Instead,
break the cycle with a positive post.

• If someone asks a question and you
know the answer, offer to help.

• Thank others who help you online.

Data Protection

Data protection refers to the practices,

safeguards, and binding rules put in place to

protect your personal information and ensure
that you remain in control of it.

In short, you should be able to decide whether

you want to share some information or not, who

has access to it, for how long, for what reason,

and who be able to modify some of this

information Personal data is any information

relating to you, whether it relates to your private,
professional, or public life.

 27 | K V S – R e g i o n a l O f f i c e , J A I P U R | S e s s i o n 2 0 2 1 - 2 2

In the online environment, where vast amounts

of personal data are shared and transferred
around the globe instantaneously,

It is increasingly difficult for people to maintain

control of their personal information. This is
where data protection comes in.

Intellectuals Property Rights (IPR)

Intellectual property refers to intangible

property that has been created by individuals

and corporations for their benefit or usage such
as copyright, trademark, patent and digital data.

It is therefore unethical to copy or steal the

creativity and efforts of someone else.

Intellectual property is divided into categories

which are-

• Industrial property which majorly speaks
about protecting inventions on the other
hand.

• Copyright majorly protects literary and
artistic works.

•

licensing of intellectual property:

Copyright , Patent and Trademark,

• Code of the software will be protected
by a copyright.

• Functional expression of the idea will be
protected by a patent

• The name and logo of the software will
come under a registered trademark

PLAGIARISM

Plagiarism pronounced as plei ·juh·ri·zm

Plagiarism means not giving authors credit after
copying that author’s work.

It involves lying, cheating, theft and dishonesty.

For example, copying papers written by other

people and professional and claims it as written

by you can be an example of plagiarism.

It can be classified as:

• Accidental/unintentional
• Deliberate/intentional

Accidental/unintentional Plagiarism: .

Involves careless paraphrasing (changing the

words or sentence construction of a copied

document), quoting text excessively along with

poor documentation. Accidental Plagiarism

cases are less serious whereas

Deliberate/intentional Plagiarism : Includes

copying someone else’s work, cutting and

passing blocks of text or any kind of information

from electronic sources without the permission

of the original author. Deliberate plagiarism that
may result in serious implications.

HOW TO AVOID PLAGIARISM?

Plagiarism should be avoided by the following

simple measures:

• Use your own ideas and words.

• Always provide a reference or give credit
to the source from where you have
received information.

• Cite the name of the website, a URL or
the name of authors, and acknowledge
them if you have used their work after
rearranging the order of a sentence and
changing some of the work.

• Take the information in the form of
bulleted notes in your words.

• Use online tools to check for plagiarism.

• Develop your writing skills.

Licensing and copyright

A Software license is a legal permission or right

to use or redistribution of that software. The

software can run on a certain number of
computers as per license agreement.

PROPRIETARY LICENSES:-

Exclusive rights in the software are retained

with the owner /developer /publisher. They

reserve all the freedom and rights to use and
distribute this proprietary software.

PERMISSIVE LICENSES :-

Permissive licenses provide a royalty-free

license to do virtually anything with the source

code.

 28 | K V S – R e g i o n a l O f f i c e , J A I P U R | S e s s i o n 2 0 2 1 - 2 2

They permit using, copying, modifying, merging,

publishing, distributing, sublicense and/or

selling ,but distribution can only be made

without the source code as source code

modifications can lead to permissive license

violation.

COPYLEFT LICENSE

 In the case of copyleft licenses, source code has
to be provided.

Distribution and modification of source code is
permitted.

Example:

General Public License (GPL),

Creative Commons License (CC),

Lesser General Public License (LGPL),

Mozilla public License (MPL) etc.

COPYRIGHT

It is a form of protection given to the authors of “original works of authorship”. This is given in the field of

literature, dramatics, music, software, art etc. This protection applies to published as well as unpublished

work.

Software copyright is used by software developers and proprietary software companies to prevent the

unauthorized copying of their software. Free and open source licenses also rely on copyright law to

enforce their terms. Copyright protects your software from someone else copying it and using it without
your permission. When you hold the copyright to software, you can-

• Make copies of it.

• Distribute it.

• Modify it

Cyber Crime:

Cybercrime is any criminal offence involves the use

of electronic communication, computer or

internet. The term “Cybercrime” that covers

phishing, Identity theft, credit card frauds, illegal

downloading, child pornography, cyber bullying,

cyber trolls, cyber stalking, cyber terrorism,

distribution of viruses, spam, and industrial

intelligence and so on.

1. Identity theft:

When we buy or sell goods using social media or

we give out private data to business for the right

usage. Personal data or login details cannot be

used for harmful reasons like posting comments

on someone else with stolen identity is called
identity theft.

2. Cyber Trolls:

Posting insulted messages online targeting

people is called cyber trolls. It is closely related

to cyber bullying.

3. Cyber Bullying:

Harassing people or acting like someone or

posting negative comments to someone or acting

like someone using modern technologies such as

internet, email, cell phone, instant massagers’,
social networks etc is called as Cyber Bullying.

4. Cyber Stalking:

Cyber stalking is a crime in which the attacker

harasses a specific victim using electronic

communication such as email or online message.

Stalkers know their victims and they attack
online instead resolving issues off line.

5. Phishing:

Phishing is a cyber attack that uses email or

website as a weapon trick the email recipient

into believing that the message is something they

want or need — a request from their bank, to

click a link or download an attachment. They try

to gather personal information or debit/credit
card information.

 29 | K V S – R e g i o n a l O f f i c e , J A I P U R | S e s s i o n 2 0 2 1 - 2 2

6. Child pornography:

Chile Pornography is defined as any

visual or written representation

including images or video that depicts

sexual activity of anyone under the age of

18. Child pornography is sometimes

called "child sexual abuse images".

Online Fraud:

Fraud committed using the internet is called
online fraud and may occur in many ways

• Non-delivery goods

• Non-existent companies

• Stealing information

• Fraudulent payments etc.

Digital Forensics:

It refers to methods used for interpretation of

computer media for digital evidence.

Cyber Law and IT Act:

Cyber law refers to all the legal and regulatory

aspects of internet and WWW. Cyber law touches

all the transactions and activities of internet,

WWW.

In India cyber law was enforced through IT Act,

2000 based on UNCITRAL (United Nations

Commission for International Trade Related

Laws). It purpose is to provide legal recognition

to electronic commerce.

The Act was later amended in December 2008 to

provide additional focus on information security

i.e. It Act, 2008. Major amended are

Digital Signatures i.e authentication of electronic

records.

Electronic Governance i.e. E-documents get legal

recognition.

The maximum penalty for any damage to
computers is fine up to 1 crore.

Other amended acts such as IPC 1860, 1872,

1891 and 1934.

Technology & Society:

Technologies whose value and impact arise

primarily from their use in economic and social

sectors. The impacts of ICT have had on the

development of economies, societies and culture
include

Economic impacts include the globalization of

production in goods and services, changes in

international trade and distribution network,

changes in pattern of consumption,

virtualization of some products and behaviors

and growing the importance of ICT sector within
the world. The economic benefit include

Secure transactions, Ease of availability, Net
banking, Global market

Social impact include mass market access to an

increased information resources, enhanced, new

pattern of work and human settlement and

changes in the relationships between
government, citizen and the state.

E-Waste Management:

Electronic waste describes discarded electrical

or electronic devices. “Electronic waste” may

also be defined as discarded computers, office

electronic equipment, entertainment device

electronics, mobile phones, television sets and

refrigerators. This includes used electronics

which are destined for reuse, resale, salvage,

recycling or disposal.

Electrical and Electronic equipment contains

metallic and non-metallic elements such as

Copper, Aluminium, Gold, Silver, Palladium,

Platinum, Nickel, Tin, Lead, Iron, Sulphur,

Phosphorous, Arsenic etc.

The recycle and recovery includes the following

unit operations

• Dismantling involves removal of parts

containing dangerous substances, parts

containing valuable substances.

 30 | K V S – R e g i o n a l O f f i c e , J A I P U R | S e s s i o n 2 0 2 1 - 2 2

• Separation of ferrous metal, non-ferrous

metal and plastic.

• Repair and reuse.

• Recovery of valuable materials.

• Disposal of dangerous materials.

The e-waste disposal and recycling are very

much necessary and important for the benefit of

people, environment and the nation. The key

benefits are

• Allows for recovery of valuable precious

metals

• Protects public health and water quality.

• Creates jobs

• Toxic waste

• Saves landfill space.

Awareness about health concerns related to the

usage of Technology

Awareness about health concern related to
the usage of technology:-

1. Digital eye strain

• Symptoms of digital eye strain may

include:

• Blurred vision

• Dry eyes

• Headaches

• Neck and shoulder pain

2. Emotional problems

• Makes you feel anxious or depressed.

3. Sleep problems

4. Musculoskeletal problems

• When you use a Smartphone, the chances

are that you’re holding your head in an

unnatural forward-leaning position.

• This position puts a lot of stress on your

neck, shoulders, spine and repetitive

strain injuries

• of the fingers, thumbs, and wrists.

5. Negative effects of technology on kids:

• Too much screen time or low-quality

screen time may lead to

• Behavioral problems

• less time for play and loss of social skills

• obesity

• sleep problems

• violence

 31 | K V S – R e g i o n a l O f f i c e , J A I P U R | S e s s i o n 2 0 2 1 - 2 2

MEASURES TO SAFEGUARD FROM NEGATIVE TECHNOLOGICAL EFFECTS

• Clear your phone of unessential apps to keep you from constantly checking it for updates.

• Take frequent breaks to stretch, create an ergonomic workspace and maintain proper posture while
using devices

• Carve out a specific, limited amount of time to use your devices.

• Turn some television time into physical activity time.

• Keep electronic devices out of the bedroom. Charge them in another room. Turn clocks and other
glowing devices toward the wall at bedtime.

• Make mealtime gadget-free time.

• Prioritize real-world relationships over online relationships.

• CHECK OUT else you will be WIPED OUT:-

• Technology is a part of our lives. It can have some negative effects, but it can also offer many positive
benefits and play an important role in education, health, and general welfare.

• Knowing the possible negative effects can help you take steps to identify and minimize them so that
you can still enjoy the positive aspects of technology.

 32 | K V S – R e g i o n a l O f f i c e , J A I P U R | S e s s i o n 2 0 2 1 - 2 2

 33 | K V S – R e g i o n a l O f f i c e , J A I P U R | S e s s i o n 2 0 2 1 - 2 2

 ©KENDRIYA VIDYALAY SANGATHAN, JAIPUR REGION

