

केन्द्रीय विद्यालय संगठन, जयपुर संभाग KENDRIYA VIDYALAYA SANGATHAN JAIPUR REGION

STUDY MATERIAL CLASS-12 SUBJECT—INFORMATICS PRACTICES SESSION : 2021-22 (Term-I)

CHIEF PATRON

Sh. B L Morodia Deputy Commissioner KVS (RO), Jaipur

PATRON

Shri D R Meena Assistant Commissioner KVS(RO), Jaipur

CONTENT COORDINATOR/COURSE DIRECTOR

Sh. Narsi Lal Principal KV Suratgarh Cantt

Coordinators:

Sh. Mahendra Sethi, PGT Computer Science, KV Suratgarh Cantt Sh. Pankaj Singh, PGT Computer Science, KV Bharatpur Sh. Ashish Kumar Joshi, PGT Computer Science, KV Baran

CROUR	NAME OF PGT COMPUTER	NAME OF KV	WORK ASSIGNED FOR 3 DAYS	
GROUP	MANISH SONI		Introduction to Python libraries- Pandas.	
	MS KIII DEED KAUD		Matplotlib.	
	V D MEENA		• Data structures in Pandas - Series and	
CDOUD 1			data frames.Series: Creation of series	
GROUP-1	DR AJAT KUMAR GARG	K V NO 3 NAL BIKANER	dictionary scalar value: mathematical	
			operations; series attributes, head and tail	
	PRADEEP SWAMI		functions;	
		JHUNJHUNU	selection, indexing and slicing.	
	VISHAL GOSWAMI	NO1 BIKANER	dictionary of series, list of dictionaries.	
	SATISH CHANDRA JANGIR	KV NO. 3 JAIPUR	text/CSV	
		KV NO.1 AFS JODHPUR	files, display, iteration. Operations on	
GROUP-2	MRS. NIPUN KALRA WALIA	K V NO 6 JAIPUR	rows and columns: add (insert / append),	
			delete (drop column and row), rename,	
	RAJESH SUYAL		Head and Tail functions, indexing using	
			labels,	
			Data Visualization	
	NEHA TYAGI	KV NO 3 JAIPUR	 Data Visualization : Purpose of plotting, 	
	MRS. MAMTA JAIN		drawing and saving of plots using	
GROUP-3		BHILWARA	Matplotlib (line	
	ADARSH BHATNAGAR	KV NO.2, BIKANER	plots;; adding label, title, and legend in	
	MR. AAKIB JAVED	BSF JODHPUR	plots.	
	PREM PRAKASH MEENA	ALWAR		
	BIRBAL JAT	DABLA	Digital footprint, net and communication etiquettes.	
	PANKAJ MEHRA	KV JHALAWAR	• Data protection, intellectual property	
GROUP-4	P KACHHAWA	KV NO 2 AIMER	rights (IPR), plagiarism, licensing and	
	SH VIJAY KUMAR GARG	KV GANGAPUR CITY	• Free and open source software (FOSS)	
	PINKY KUMARI MEENA			
		KV NOZ ARMY JODHPUR	Cybercrime and cyber laws backing	
	AMIT KUMAR JAIN	NO.4 JAIPUR	phishing, cyber bullying, overview of	
	GHANSHYAM CHITARA	AFS UTTARLAI	Indian IT Act.	
GROUP-5	VIKRAM SINGH PAREVA	KV CHITTORGARH	• E-waste: hazards and management.	
	GAJRAJ MEENA	KV KARAULI	to the usage	
	KAVITA ACHARYA	KV BANSWARA	of technology.	
	SANDEEP ARORA	KENDRIYA VIDYALAYA NO.1 UDAIPUR	3 Sample Question Paper for Term-I as per CBSE pattern	
	MR. ARVIND KUMAR	KV NO. 1, JAIPUR]	
GROUP-6	SH. P. R. GOLIA	KV NASIRABAD	4	
	MRS. PREETI MEHARISHI	KV AFS JAISALMER	4	
	VIJETA DARA	NO 5 (I SHIFT) JAIPUR		
	DILIP SINGH	BANAR JODHPUR	3 Sample Question Paper for Term-I as per CBSE pattern	
	SH. PRAVEEN KUMAR YADAV	SAWAI MADHOPUR		
GROUP-7	USHA BENIWAL	K V NO 2, JAIPUR	4	
	KRISHAN KUMAR KUMAWAT	KV 1 AJMER		
	NAVNEET	KENDRIYA VIDYALAYA		
		GHUKU		

Informatics Practices CLASS XII Term - 1 Distribution of Theory Marks

Unit No	Unit Name	Marks
1	Data Handling using	25
	Pandas and Data	
	Visualization	
4	Societal Impacts	10
	Total	35

Unit 1: Data Handling using Pandas and Data Visualization

Data Handling using Pandas -I

• Introduction to Python libraries- Pandas, Matplotlib.

• Data structures in Pandas - Series and data frames. Series: Creation of series from dictionary, scalar value; mathematical operations; series attributes, head and tail functions; selection, indexing and slicing.

• Data Frames: creation of data frames from dictionary of series, list of dictionaries, text/CSV files, display, iteration. Operations on rows and columns: add (insert /append), select, delete (drop column and row), rename, Head and Tail functions, indexing using labels, Boolean indexing. Data Visualization

• Data Visualization : Purpose of plotting, drawing and saving of plots using Matplotlib (line plot, bar graph, histogram). Customizing plots:; adding label, title, and legend in plots.

Unit 4: Societal Impacts

- Digital footprint, net and communication etiquettes,
- Data protection, intellectual property rights (IPR), plagiarism, licensing and copyright,
- Free and open source software (FOSS),
- Cybercrime and cyber laws, hacking, phishing, cyber bullying, overview of Indian IT Act.
- E-waste: hazards and management. Awareness about health concerns related to the usage of technology.

S.No.	Unit/ Topic	Page No.
1	Python Pandas Series	5
2	Data Frame	10
3	Data Visualization	21
4	Societal Impact	26

INDEX:

Python Pandas Series & DataFrame

Python Pandas:

Pandas is most popular library. It provides various functions related to Scientific Data analysis, like

Pandas is Python's library for data analysis. Pandas has derived its name from PANel DAta System. Pandas developed by Wes McKinney

- It can read and write different data formats like int, float, double
- It can calculate data that is organized in row and columns.
- It can select sub set of data values and merge two data sets.
- It can support reshape of data values.
- It can support visualization library matplotlib.

Data Structure:

Pandas Data Structure is a way to store & organize data values in a specific manner so that various specific functions can be applied on them. Examples- array, stack, queue, linked list, series, DataFrame etc.

"Series" Vs "DataFrame"			
Property	Series	DataFrame	
Dimensions	One-Dimensional	Two-Dimensional	
Types of	Homogenous	Heterogeneous	
data	(In Series, all data	(In DataFrame,	
	values should be of	data values may	
	same type)	be of different	
		type)	
Value	Yes, Mutable	Yes, Mutable	
Mutable			
Size	Size is Immutable.	Size is Mutable.	
Mutable	Once the size of series	Once the size of	
	created, it cannot be	DataFrame	
	changed.	created, it can be	
	(If add/delete	changed.	
	element, then new		
	series object will be		
	created.)		

"Series" Data Structure:

A Series is a Pandas Data Structure that represent 1–Dimensional array of indexed data. The series structure contains two parts. It requires to import pandas and numpy package. 1. An array of actual data values

2. An associated array of indexes (Used to access data values)

Creation of Series:

A series of object can be created by using many ways. Like

- 1. Creation of empty series by using Series()
- 2. Creation of non- empty series with Series()

1. Creation of empty series:

Syntax:

Series_object = pandas.Series() # S is capital in Series() Example: import pandas Ser_obj1 = pandas.Series() # It will create an empty series of float type.

2. Creation of Non empty series

Syntax:

Series_object = pandas.Series(data, index=idx) Where data is array of actual data value of series. Index is any valid numpy datatype. Index can be any type of following.

- A Python sequence
- An nd array
- A Python dictionary
- A scalar value
- Example:

Ser_obj2 = pandas.Series([1,3,5])

- Output:
- 0 1
- 1 3
- 2 5

Ser_obj3 = pandas.Series([1.5,3.5,5.5])

- Output:
- 0 1.5
- 1 3.5
- 2 5.5

Creation of Series for various Objects:

Series of List (Integer values)			
import pandas as pd	as pd Series of Object-1		
S1=pd.Series([2,4,6])	0		2
print(" Series of Object-1")	1		4
print(S1)	2		6
Series of Tuple (Integer values)			
import pandas as pd	Series o	f Obje	ct-2
S2=pd.Series((20,40,60))	0		20
print(" Series of Object-2")	1		40
print(S2)	2		60
Series of List (Character values)			
import pandas as pd	Series o	f Obje	ct-3
S3=pd.Series(['K','V','S'])	0	К	
print(" Series of Object-3")	1	V	
print(S3)	2	S	

Series of List (string value)		print(" Series of Object-12)	2 5.5
import pandas as pd	Series of Object-4	print(S12)	
S4=pd.Series(["KVS JJN"])	0 KVS JJN		
print(" Series of Object-4")		Series of None values	
print(S4)		import pandas as pd	Series of Object-
Series of List (String values)		import numpy as np	13
import pandas as nd	Sorios of Object-5	S13-nd Series([9 5 nn None	0 95
SE and Sories (["VVS" "UN"])	o vvc		1 Nono
$35-\mu$ u.series([KV3, JJN])		(3.3]	
print(Series of Object-5)	I JJN	print(Series of Object-13)	2 5.5
print(S5)		print(\$13)	
Series of array using arange	e ()	Series by using for loop	
	1	import pandas as pd	Series of Object-
import pandas as pd	Series of Object-6	import numpy as np	14
import numpy as np	0 3.0	ind=x for x in 'ABCDE'	A 1
nd1=np.arange(3, 13, 3.5)	1 6.5	S15=pd.Series(range(1,15,3)), B 4
S6=pd.Series(nd1)	2 10.0	index=ind)	C 7
print(" Series of Object-6")		print(" Series of Object-14)	D 10
print(S6)		nrint(\$14)	E 13
Series of array using linenac	e ا	Series Special examples	
Series of array using inspac	C ()	import pandas as nd	Series of Object
import pondos os pd	Service of Object 7	import numpu as nn	
import pandas as pu	Series of Object-7	import numpy as np	15 Jan 21.0
Import numpy as np	0 24.0	arr=np.array([31,28,31,30])	Jan 31.0
nd2=np.linspace(24, 64, 5)	1 34.0	day=['Jan', Feb', Mar', Apr']	Feb 28.0
S7=pd.Series(nd2)	2 44.0	S15=pd.Series(data=arr,inde	e Mar 31.0
print(" Series of Object-7")	3 54.0	x=day, dtype=np.float64)	Apr 30.0
nrint(S7)	4 64.0	print("Series of Object-15")	
princ(37)	4 04.0		
Series of dictionary	4 04.0	print(S15)	
Series of dictionary import pandas as pd	Series of Object-8	print(S15) Series() Special examples	
Series of dictionaryimport pandas as pdimport numpy as np	Series of Object-8 Feb 28	print(S15) Series() Special examples import pandas as pd	Series of Object-
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Ian':31.	Series of Object-8 Feb 28 Jan 31	print(S15) Series() Special examples import pandas as pd import numpy as np	Series of Object- 16
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28.'Mar":31})	Series of Object-8 Feb 28 Jan 31 Mar 31	import pandas as pd import numpy as np a=np.arange(9.13)	Series of Object- 16 9 81
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8")	Series of Object-8 Feb 28 Jan 31 Mar 31	import numpy as np a=np.arange(9,13)	Series of Object- 16 9 81 10 100
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8)	Series of Object-8 Feb 28 Jan 31 Mar 31	print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2)	Series of Object- 16 9 81 10 100 11 121
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8)	Series of Object-8 Feb 28 Jan 31 Mar 31	print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object=16")	Series of Object- 16 9 81 10 100 11 121 12 144
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd	Series of Object-8 Feb 28 Jan 31 Mar 31	print("Series of Object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16)	Series of Object- 16 9 81 10 100 11 121 12 144
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd Sories(10)	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9	print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples	Series of Object- 16 9 81 10 100 11 121 12 144
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index mage() 2))	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10	print("Series of Object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object-
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3))	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10	print("Series of Object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9")	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10	print("Series of object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd import numpy as np	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9)	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10	print("Series of object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11]	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 user defined	print("Series of Object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11] S17=pd.Series(data=lst*2)	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10
Series of dictionaryimport pandas as pdimport numpy as npS8=pd.Series({'Jan':31,'Feb':28,'Mar":31})print(" Series of Object-8")print(S8)Series using range()import pandas as pdS9=pd.Series(10,index=range(0,3))print(" Series of Object-9")print(S9)Series of scalar values usingindex	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 user defined	print("Series of Object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11] S17=pd.Series(data=lst*2) print("Series of Object-17")	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 User defined Series of Object-	print("Series of Object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11] S17=pd.Series(data=lst*2) print("Series of Object-17") print(S17)	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20,	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 User defined Series of Object- 11	print("bence of object 10") print(\$15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) \$16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(\$16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11] \$17=pd.Series(data=lst*2) print("Series of Object-17") print(\$17)	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20, index=['Rai'.'PB'.'HR'])	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 user defined Series of Object- 11 Raj 20	print("berieb of object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11] S17=pd.Series(data=lst*2) print("Series of Object-17") print(S17)	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10 5 11
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20, index=['Raj','PB','HR']) print(" Series of Object-11)	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 User defined Series of Object- 11 Raj 20 PB 20	<pre>print("series of object 10") print(\$15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(\$16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11] S17=pd.Series(data=lst*2) print("Series of Object-17") print(\$17) Attributes of Series Object</pre>	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10 5 11
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20, index=['Raj','PB','HR']) print(" Series of Object-11) print(S11)	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 User defined Series of Object-11 Raj 20 PB 20 HR 20	print("Series of Object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11] S17=pd.Series(data=lst*2) print("Series of Object-17") print(S17) Attributes of Series Obj Attribute	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10 5 11 ect
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20, index=['Raj','PB','HR']) print(" Series of Object-11) print(S11) Series of NaN (Not a Number	Series of Object-8 Feb 28 Jan 31 Mar 31 Mar 31 Series of Object-9 0 10 1 10 2 10 User defined Series of Object-11 Raj 20 PB 20 HR 20	print("bence of object 10") print(S15) Series() Special examples import pandas as pd import numpy as np a=np.arange(9,13) S16=pd.Series(index=a, data=a**2) print("Series of Object-16") print(S16) Series() Special examples import pandas as pd import numpy as np lst=[9,10,11] S17=pd.Series(data=lst*2) print("Series of Object-17") print(S17) Attributes of Series Obj Attribute Description	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10 5 11 ect
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20, index=['Raj','PB','HR']) print(" Series of Object-11) print(S11) Series of NaN (Not a Number import pandas as pd	Series of Object-8 Feb 28 Jan 31 Mar 31 Mar 31 Series of Object-9 0 10 1 10 2 10 user defined Series of Object- 11 Raj 20 PB 20 HR 20 Values	print("series of object 10")print(S15)Series() Special examplesimport pandas as pdimport numpy as npa=np.arange(9,13)S16=pd.Series(index=a,data=a**2)print("Series of Object-16")print(S16)Series() Special examplesimport pandas as pdimport pandas as pdimport numpy as nplst=[9,10,11]S17=pd.Series(data=lst*2)print("Series of Object-17")print(S17)Attributes of Series ObjAttributeDescriptionSeries_object.It show the iindox	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10 5 11 ect ndexes of series
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20, index=['Raj','PB','HR']) print(" Series of Object-11) print(S11) Series of NaN (Not a Number import pandas as pd import pandas as pd import pandas as pd	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 User defined Series of Object- 11 Raj 20 PB 20 HR 20 Values Series of Object- 12	princ(corrector object 10)print(S15)Series() Special examplesimport pandas as pdimport numpy as npa=np.arange(9,13)S16=pd.Series(index=a,data=a**2)print("Series of Object-16")print(S16)Series() Special examplesimport pandas as pdimport pandas as pdimport numpy as nplst=[9,10,11]S17=pd.Series(data=lst*2)print("Series of Object-17")print(S17)Attributes of Series ObjAttributeDescriptionSeries_object.It show the iindexobject	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10 5 11 ect ndexes of series
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20, index=['Raj','PB','HR']) print(" Series of Object-11) print(S11) Series of NaN (Not a Number import pandas as pd import numpy as np S12=pd.Series(10, 5 are NeW 5	Series of Object-8 Feb 28 Jan 31 Mar 31 Series of Object-9 0 10 1 10 2 10 User defined Series of Object-11 Raj 20 PB 20 HR 20 Values Series of Object-12	print("series of object 10")print("Series of object 10")import pandas as pdimport pandas as pda=np.arange(9,13)S16=pd.Series(index=a,data=a**2)print("Series of Object-16")print("Series of Object-16")print("Series of Object-16")print(S16)Series() Special examplesimport pandas as pdimport pandas as pdimport numpy as nplst=[9,10,11]S17=pd.Series(data=lst*2)print("Series of Object-17")print("Series of Object-17")print(S17)Attributes of Series ObjAttributeDescriptionSeries_object.It show the iobject	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10 5 11 ect ndexes of series nd-array values of
Series of dictionary import pandas as pd import numpy as np S8=pd.Series({'Jan':31, 'Feb':28,'Mar":31}) print(" Series of Object-8") print(S8) Series using range() import pandas as pd S9=pd.Series(10, index=range(0,3)) print(" Series of Object-9") print(S9) Series of scalar values using index import pandas as pd S11=pd.Series(20, index=['Raj','PB','HR']) print(" Series of Object-11) print(S11) Series of NaN (Not a Number import pandas as pd import numpy as np S12=pd.Series([9.5,np.NaN,5.	Series of Object-8 Feb 28 Jan 31 Mar 31 Mar 31 Series of Object-9 0 10 1 10 2 10 User defined Series of Object-11 Raj 20 PB 20 HR 20 Values Series of Object-12 USER Series of Object-12 Nalues	princ(corrector object 10)print(S15)Series() Special examplesimport pandas as pdimport numpy as npa=np.arange(9,13)S16=pd.Series(index=a,data=a**2)print("Series of Object-16")print(S16)Series() Special examplesimport pandas as pdimport pandas as pdimport numpy as nplst=[9,10,11]S17=pd.Series(data=lst*2)print("Series of Object-17")print(S17)Attributes of Series ObjAttributeDescriptionSeries_object.It show the iindexobjectSeries_object.It show the rvaluesseries object	Series of Object- 16 9 81 10 100 11 121 12 144 Series of Object- 17 0 9 1 10 2 11 3 9 4 10 5 11 ect ndexes of series nd-array values of

Г

Series_object.	It show the data types of data
dtype	values of series object
Series_object.	It show tuple of shape
shape	underlying data of series object
Series_object.	It show the number of bytes of
nbytes	underlying data of series object
Series_object.	It show the number of
ndim	dimensions of underlying data
	of series object
Series_object.	It show the number elements in
Series_object. size	It show the number elements in series object
Series_object. size Series_object.	It show the number elements in series object It show the size of data type of
Series_object. size Series_object. itemsize	It show the number elements in series object It show the size of data type of underlying data of series object
Series_object. size Series_object. itemsize Series_object.	It show the number elements in series object It show the size of data type of underlying data of series object It show True if there is NaN /
Series_object. size Series_object. itemsize Series_object. hasnans	It show the number elements in series object It show the size of data type of underlying data of series object It show True if there is NaN / None value in Series, otherwise
Series_object. size Series_object. itemsize Series_object. hasnans	It show the number elements in series object It show the size of data type of underlying data of series object It show True if there is NaN / None value in Series, otherwise returns False.
Series_object. size Series_object. itemsize Series_object. hasnans Series_object.	It show the number elements in series object It show the size of data type of underlying data of series object It show True if there is NaN / None value in Series, otherwise returns False. It returns True if series is

Example with Attribute	Output		
# Example of Series			
import numpy as np			
import pandas as pd			
Ind=['Jan','Feb','Mar','Apr']			
Val=[31,28,31,30]			
<pre>Sr_Obj=pd.Series(data=Val, index=Ind)</pre>			
print(Sr_Obj.index)	Index(['Jan', 'Feb',		
	'Mar', 'Apr'],		
	dtype='object')		
print(Sr_Obj.values)	[31 28 31 30]		
print(Sr_Obj.dtype)	int64		
print(Sr_Obj.itemsize)	8		
print(Sr_Obj.size)	4		
print(Sr_Obj.ndim)	1		
print(Sr_Obj.empty)	False		
print(Sr_Obj.hasnans)	False		

32

print(Sr_Obj.shape)	(4,)
Accessing individual ele	ement of Series
Syntax: Series_Object[Val	id index]
import numpy as np	
import pandas as pd	
Ind=['Jan','Feb','Mar','Apr	']
Val=[31,28,31,30]	
Sr_Obj=pd.Series(data=Va	al, index=Ind)
# print Whole series	Jan 31
	Feb 28
print(Sr_Obj)	Mar 31

print(Sr_Obj.nbytes)

	Apr 30
	dtype: int64
print(Sr_Obj['Feb'])	28
print(Sr_Obj['Apr'])	30
Accessing Slice of Series	5
Slicing takes place position	on wise (built in Index)
and not the index wise in	a series object.
Syntax: Series Object[Sta	rt: End: Step]
Where.	F]
Start is Lower Limit (defa	ult is 0)
End is Upper Limit	
Step is updation (default	is 1)
Note: slicing may be -ve a	also
print(Sr 0hi[1·3·1])	Feb 28
	Mar 31
$print(Sr Obi[_1,_3,_1])$	$\frac{1}{1}$
princ(31_00)[-131])	$\frac{API}{Mar} = 31$
nrint(Sr Ohi[11)	Fob 20
	$\begin{array}{c} \Gamma \in U 20 \\ Mar 21 \end{array}$
	Mai 31
	Apr 30
prinu(sr_ob)[::1])	Jall 31
	Feb 28
	Mar 31
: (C	Apr 30
print(Sr_Ob)[::-1])	Apr 30
	Mar 31
	Feb 28
	Jan 31
Modifying Elements of c	of Series
Sumtaw Carias Object[ind	ov / alical - nouvealue
Syntax: Series_Object[ind	ex / sheej= new value
$SI_ODJ[1]=29$	Jan 31 Ech 20
print(Sr_Ob))	Feb 29 Mar 21
	Mar 31
Cr. Ob:[. 2, 1], 24	Apr 30 Charge 21 is Let
S[UD][:-3:-1]=31	Change 31 in Last
print(Sr_Ob))	2 place
	Jan 31
	Feb 29
	Mar 31
	Apr 31
print("Add New element	Add New element
100")	100
Sr_Ubj['May']=100	Jan 31
print(Sr_Obj)	Feb 29
	Mar 31
	Apr 31
	May 100
print("Delete Last index")) Delete Last index
del Sr_Obj['May']	Jan 31
print(Sr_Obj)	Feb 29

	Mar 31	print(Sr_Obj.tail(
	Apr 31	
print("Rename Index")	Rename Index	
Sr_Obj.index=['J','F','M','A']	J 31	
print(Sr_Obj)	F 29	
	M 31	Vector operat
	A 31	Similar to nd-arra
		applied on series
		mean, one operat
head() and tail()		element of series

head() returns first n rows and tail() returns		
last n rows from series.		
If n is not given then by default it will return 5		
rows.		
Sytax:		
Series Object.head([n])		
Series_Object.tail([n])		
import numpy as np		
import pandas as pd		
Ind=['Jan','Feb','Mar','Apr	·','May','Jun','Jul']	
Val=[31,28,31,30,31,30,3	1]	
Sr_Obj=pd.Series(data=Val, index=Ind)		
print("Display First 2 Display First 2 Rows		
Rows")	Jan 31	
print(Sr_Obj.head(2))	Feb 28	
print("Display First 5	Display First 5 Rows	
Rows") Jan 31		
print(Sr_Obj.head()) Feb 28		
Mar 31		
Apr 30		
May 31		
print("Display First 6	Display First 6 Rows	
Rows")	Jan 31	
print(Sr_Obj.head(6))	Feb 28	
	Mar 31	
	Apr 30	
	May 31	
Jun ³⁰		
print("Display Last 2	Display Last 2 Rows	
Rows") Jun 30		
print(Sr_Obj.tail(2)) Jul 31		
print("Display Last 5 Display Last 5 Rows		
Rows") Mar 31		
print(Sr_Obj.tail()) Apr 30		
	May 31	
Jun ³⁰		
Jul 31		
print("Display Last 6 Display Last 6 Rows		
Rows")	Feb 28	

print(Sr_Obj.tail(6))	Mar 3 Apr 3 May 3 Jun 30	1 0 31)
Vector operations Similar to nd-array, the	Jul 31 on Serie vector ope talso Scala	s Object erations can be
mean, one operation ca element of series object	n be applie t at a time.	ed to each
import numpy as np Sr_Obj=pd.Series(index data=[10,20,30,40])	=['A', 'B',	'C' , 'D'],
print("Add 5 in each ele Sr_Obj") print(Sr_Obj+5)	ement of	Add 5 in each element of Sr_Obj A 15 B 25 C 35 D 45
print("Multiply by 5 in o element of Sr_Obj") print(Sr_Obj*5)	each	Add 5 in each element of Sr_Obj A 50 B 100 C 150 D 200
print("Divide 5 in each of Sr_Obj") print(Sr_Obj/5)	element	Add 5 in each element of Sr_Obj A 2.0 B 4.0 C 6.0 D 8.0
print(Sr_Obj>20)		A False B False C True D True
print("Sr_Obj**2") print(Sr_Obj**2)		A 100 B 400 C 900 D 1600
#Adding two Series import numpy as np import pandas as pd class11=pd.Series(data ce','arts','commerce']) class12=pd.Series(data	s of simi =[30,40,50 =[60,80,10	lar indexes)],index=['scien)0],index=['scie

٦

nce','arts','commerce'])

print("Total number of students") print(class11+class12)				
Output: Total number of students				
science 90				
arts 120				
commerce 150				
#Adding two Series of dissimilar	r indexes			
class11=pd.Series(data=[30,40,50	J,index=['scien			
ce','arts','commerce'])				
class12=pd.Series(data=[60,80,10	0],index=['sci',			
'arts','commerce'])				
print("Total number of students")				
print(class11+class12)				
Output:				
Total number of students				
arts 120.0				
commerce 150.0				
sci NaN				
science NaN				
Science Main				
Filtering Entries of Series				
import pandas as pd				
Info-nd Sories(data-[21 11 51])	info>10			
1110-pu.sei ies(uata-[51,41,51])				
rright("infer (0) r" infer (0)	0 False			
print(1110>40\n , 1110>40)	1 True			
	2 Irue			
print("info[info>40]\n",	info[info>40]			
info[info>40])	1 41			
	2 51			
Sorting Series Values based	l on Values			
import pandas as pd	D 100			
import numpy as np	A 200			
<pre>Sr_Obj=pd.Series(index=['A', 'B',</pre>	C 300			
'C', 'D'],	B 400			
data=[200,400.300.100])	(By default			
Sr Obisort values() OR order is				
	0140110			
Sr Oblsort values(ascending=	Ascending			
Sr_Obj.sort_values(ascending=	Ascending)			
Sr_Obj.sort_values(ascending= True)	Ascending)			
Sr_Obj.sort_values(ascending=	Ascending)			
Sr_Obj.sort_values(ascending= True) Sr_Obj.sort_values(ascending=	Ascending) B 400 C 200			
Sr_Obj.sort_values(ascending= True) Sr_Obj.sort_values(ascending= False)	Ascending) B 400 C 300 A 200			

	D 100
Sorting Series Values based	l on Indexes
Sr_Obj.sort_index() OR	A 200
Sr_Obj.sort_index(ascending=	B 400
True)	C 300
	D 100
Sr_Obj.sort_index(ascending=	D 100
False)	C 300
	B 400
	A 200
Arithmetic on Series	
import pandas as pd	Addition of
import numpy as np	Series-s1+s2:
s1=pd.Series(data=[20,40,60],	A 22
index=['A','B','C'])	B 44
s2=pd.Series(data=[2,4,6],	C 66
index=['A','B','C'])	
print("Addition of Series:	
s1+s2")	
print(s1+s2)	
print("Division of Series: s1/s2")	Division of
print(s1/s2)	Series: s1/s2
	A 10.0
	B 10.0
	C 10.0
print("Addition of Series:	Addition of
\$3=s1+s2")	Series:
s3=s1+s2	S3=s1+s2
print(s3)	A 22
	B 44
	C 66

NumPy Arrays Vs Series Object

- 1. In ndarray, vector operations can only be performed if shape of both array match, otherwise it will generate error.
- 2. In Series, vector operations can have performed with different shapes series also. For different shape series operation gives NaN values.
- 3. In ndarray, the indexes always numeric and start with 0 onwards. But in series, indexes can have any type of indexes.

DATAFRAME -

A Data frame is a two- dimensional data structure, i.e., data is aligned in a tabular fashion in rows and columns.

Features are:

- Two-dimensional
- size-mutable &
- data mutable
- Contains heterogeneous data
- Contains rows and columns index

• The DataFrame contains labelled axes (rows or axis = 0 and columns or axis = 1).

• All elements within a single column have the same data type, but different columns can have different data types.

Have a look to know the 2- D form representation of a DataFrame -

Row↓	Column ↓ Roll /0	Column↓ Name/1	Column ↓ Mark /2
FIRST/0	D[0][0]	D[0][1]	D[0][2]
SECOND/1	D[1][0]	D[1][1]	D[1][2]
THIRD/2	D[2][0]	D[2][1]	D[2][2]

For using the DataFrame object we must import the pandas library as below:

<mark>import pandas</mark> OR <mark>import pandas as</mark> ALIAS-NAME

Creating a DataFrame

Mainly DataFrame() function of pandas library is used. There are different ways of creating a DataFrame using -

<mark>A - Empty DataFrame</mark>

Let us learn with help of an example to create and print a DataFrame.

import pandas

DF = pandas.DataFrame() print(DF) OUTPUT –

Empty DataFrame Columns: [] Index: []

B - Dictionary of Series

Example 1 – s = pandas.Series(100, index =['a','b','c','d']) print(s) df = pandas.DataFrame(s) print(df)

OUTPUT -

а	100	9
ь	100	3
с	100	3
d	100	3
dt	ype: :	int64
	0	
а	100	
b	100	
с	100	

Since DataFrames are two-dimensional, to create DataFrame from Series, we can also take two or more Series objects to create a DataFrame.

Example 2 –

import pandas

roll = pandas.Series([10, 12, 13, 16])

name = pandas.Series(['Aruna', 'Kavita',

'Gaurav','Sumit'])

DF = pandas.DataFrame({ 'Roll_No' : roll ,

'SName' : name })

print(DF)

```
OUTPUT -
```

	Roll_No	SName
0	10	Aruna
1	12	Kavita
2	13	Gaurav
3	16	Sumit

Example 3 -

import pandas s1 = pandas.Series({ 101 : 'Amit', 102 : 'Anita', 103:'Geetu', 105:'Jatin'}) s2 = pandas.Series({ 101 : 93 , 102 : 87 , 103 : 82 , 104 : 93 , 105 : 90 }) dfs = pandas.DataFrame({'Name' : s1 , 'Marks' : s2 }) print("Series 1") print("Series 1") print(s1) print(s2) print("data frame from the above series ") print(dfs)

```
10 KVS REGIONAL OFFICE, JAIPUR | SUBJECT-INFORMATICS PRACTICES (TERM-I SESSION 2021-22)
```

Series	1
101	Amit
102	Anita
103	Geetu
105	Jatin
dtype:	object
Series	2
101	93
102	87
103	82
104	93
105	90
dtype:	int64
data fr	rame from the above series
N	Jame Marks
101 A	Amit 93
102 Ar	nita 87
103 Ge	etu 82
104	NaN 93
105 Ja	atin 90

C - List of Dictionary

Recall that dictionary is of the form { key1 : value1, key2 : value2, ---}

The **keys** of the dictionary become the **column names** in the DataFrame object and the **values** of the dictionary become the **column-values** of the DataFrame object

Example 1-

import pandas

d1 = { 'roll' : 101 , 'name' : 'Astha' , 'tot_mark' : 456 } d2 = {'roll' : 104 , 'name' : 'Gautam', 'tot_mark' : 478 } d3 = {'roll' : 105 , 'name' : 'Deepika', 'tot_mark' : 453 , 'grade' : 'A2' }

```
L = [d1, d2, d3]
```

```
df_list = pandas.DataFrame(L)
```

print("Data Frame from list of dictionaries ")
print(df_list)

OUTPUT -

Da	ta Fra	me from l	ist of did	tionarie	s
	roll	name	tot_mark	grade	
0	101	Astha	456	NaN	
1	104	Gautam	478	NaN	
2	105	Deepika	453	A2	

As shown in the output, NaN (Not a Number) is automatically added for missing places.

Example 2 -

Instead of the default row labels: 0, 1, 2, 3, ... we can specify our own row labels by using the index=[list_of _row_labels] parameters in the DataFrame() function.

import pandas

 $L = [{'roll' : 101, 'name' : 'Astha' }, \$

{'roll' : 104 , 'name' : 'Gautam', 'mark' : 478}

]

DF = pandas.DataFrame(L, index= ['s1', 's2']) print("DataFrame from List of Dictionaries with Row-Index") print(DF)

ρι πιιτη στι της Οτι πρι ι π

OUTPUT –

Data	Frame	from l	List	of	Dictionaries	with	Row-Index
	roll	name	e n	nark	C		
s1	101	Astha	a	NaN	J		
s2	104	Gautar	n 47	/8.6)		

Example 3 -

We can also use the **index**=[list of row labels] and **columns**=[list_of_column_labels] to specify the row index as well as the column index Example 3, dataframe from a list of dictionaries with row index & column index import pandas L = [{'roll' : 101 , 'name' : 'Astha' } , {'roll' : 104 , 'name' : 'Gautam', 'mark' : 478}] DF = pandas.DataFrame(L, index= ['s1', 's2'], columns =['roll' , 'name']) #note, here column 'mark' is skipped print("First DataFrame") print(DF) DF2 = pandas.DataFrame(L, index= ['s1','s2'], columns=['roll', 'name', 'age']) #Here, column 'age' is additonal column, which does not exist in List of Dictionary print("Second DataFrame is") print(DF2)

OUTPUT -

First DataFrame					
	roll	name			
s1	101	Astha			
s2	104	Gautam			
Sec	ond Da	taFrame	is		
	roll	name	age		
s1	101	Astha	NaN		
s2	104	Gautam	NaN		

<mark>D - Text/CSV Files -</mark>

A CSV (Comma Separated Values) file can be imported directly to a DataFrame object using the read_csv() method.

Simple form of Syntax is -

<data-frame-name> = read_csv(<file-namepath>)

Let us take a csv file named "stu_result.csv" as below -

Adm_N	Name	Class	Marks
0			
1201	Aniket Sharma	XII	83
1203	Anita Gupta	XII	91
1206	Gautam Kumar	XI	89
1207	Mahesh Singh	XII	94
1209	Pratik Mehra	XI	90
1214	Nikita Verma	XII	92

Example 1 –

#read the csv file in a DataFrame -

import pandas as pp

pp = alias-name of pandas library
sdf

pp.read_csv("D:/CPP/python_practice/stu_resu
lt.csv")

#OR, read_csv("stu_result.csv"), if file is in same folder as our program

print(sdf)

OUTPUT -

	Adm_No	Name	Class	Marks
0	1201.0	Aniket Sharma	XII	83.0
1	1203.0	Anita Gupta	XII	91.0
2	NaN	NaN	NaN	NaN
3	1206.0	Gautam Kumar	XI	89.0
4	1207.0	Mahesh Singh	XII	94.0
5	1209.0	Pratik Mehra	XI	90.0
6	1214.0	Nikita Verma	XII	92.0

The read_csv() method has many parameters to control the kind of data imported to create the DataFrame.

Example 2 -

To show the shape (number of rows and columns) of CSV file imported in a DataFrame r ,c = sdf.shape

print("\nTotal rows", r, "Total columns", c) **OUTPUT** –

Total rows 7 Total columns 4

Similary, we can use <data-frame>.size to find number of values of DataFrame

Example 3 -

To read CSV file with specific / selected columns #usecols = to display selected columns only DF3 = pp.read_csv("stu_result.csv", usecols = ['Adm_No', 'Name', 'Class']) print("\nDataFrame is\n", DF3)

OUTPUT -

Da	taFrame i	is	
	Adm_No	Name	Class
0	1201.0	Aniket Sharma	XII
1	1203.0	Anita Gupta	XII
2	NaN	NaN	NaN
3	1206.0	Gautam Kumar	XI
4	1207.0	Mahesh Singh	XII
5	1209.0	Pratik Mehra	XI
6	1214.0	Nikita Verma	XII

Example 4 –

To read CSV file with specific / selected rows #nrows = we will use to display only first four records

DF = pp.read_csv("stu_result.csv", nrows = 4)
print("\nFirst four records of DataFrame \n ",
DF)

OUTPUT -

First four records of DataFrame						
	Adm_N	0 N	ame	Class	Marks	
0	1201.0	Aniket Sharm	а	XII	83.0	
1	1203.0	Anita Gupt	а	XII	91.0	
2	NaN	Na	N	NaN	NaN	
3	1206.0	Gautam Kuma	r	XI	89.0	

Example 5 –

To read CSV file without header

header = to omit(None) the display of headings of columns

DH = pp.read_csv("stu_result.csv", header = None)

print("The DataFrame is\n", DH)

OUTPUT -

Τh	The DataFrame is						
	0	1	2	3			
0	Adm_No	Name	Class	Marks			
1	1201	Aniket Sharma	XII	83			
2	1203	Anita Gupta	XII	91			
3	NaN	NaN	NaN	NaN			
4	1206	Gautam Kumar	XI	89			
5	1207	Mahesh Singh	XII	94			
6	1209	Pratik Mehra	XI	90			
7	1214	Nikita Verma	XII	92			

<mark>Example 6 –</mark>

To read CSV file without index

#when we do not want to display the row indices

df2 = pp.read_csv("stu_result.csv", index_col = 0) print(df2) **OUTPUT**

Name	Class	Marks
Aniket Sharma	XII	83.0
Anita Gupta	XII	91.0
NaN	NaN	NaN
Gautam Kumar	XI	89.0
Mahesh Singh	XII	94.0
Pratik Mehra	XI	90.0
Nikita Verma	XII	92.0
	Name Aniket Sharma Anita Gupta NaN Gautam Kumar Mahesh Singh Pratik Mehra Nikita Verma	Name Class Aniket Sharma XII Anita Gupta XII NaN NaN Gautam Kumar XI Mahesh Singh XII Pratik Mehra XI Nikita Verma XII

Here, Adm No will be the first column instead of indices.

Example 7 -

To read CSV file with new column names #to use different names of column from default data, use skiprows along-with names DF = pp.read_csv("stu_result.csv", skiprows =1,

names = ['StuNo', 'SName', 'SClass', 'T Marks']) $print('DataFrame \ N', DF)$

OUTPUT -

	StuNo		SName	SClass	T_Marks
0	1201.0	Aniket	Sharma	XII	83.0
1	1203.0	Anita	Gupta	XII	91.0
2	NaN		NaN	NaN	NaN
3	1206.0	Gautam	Kumar	XI	89.0
4	1207.0	Mahesh	Singh	XII	94.0
5	1209.0	Pratik	Mehra	XI	90.0
6	1214.0	Nikita	Verma	XII	92.0

Display/Iteration of DataFrame:-

import pandas as pd L1=[1,2,3,4,5] L2=[10,20,30,40,50] df=pd.DataFrame ([L1,L2],columns=['a','b','c','d','e']) print(df) # display entire DataFrame **Output:**

> b c d a е 0 1 2 3 4 5 1 10 20 30 40 50

Display columns

print(df['a']) # display data of particular column (column a) Output:

> 1 0 1 10 Name: a, dtype: int64

print(df[['a','c','e']]) # display data of multiple columns (columns a,c and e) Output:

асе 0 1 3 5 1 10 30 50

Display rows using loc method:-Syntax-

<DataFrame object>.loc[<startrow>:<endrow>,<startcolum n>:<endcolumn>]

Examples:

print(df.loc[1]) # display data of particular single row (row 1) Output:

- a 10
 - b 20
 - c 30
 - d 40
 - e 50
- Name: 1, dtype: int64

print(df.loc[0:1]) #display data of *multiple rows by using slicing(rows 0 and 1)* Output:

- a b c d e
- 0 1 2 3 4 5
- 1 10 20 30 40 50

print(df.loc([0:1,'a'] # display data of multiple rows with single column by using slicing

Output: (rows 0,1 and column a)

- 0
 - 1 1 10

Name: a, dtype: int64

print(df.loc[0:1,'a':'c']) # display data of multiple rows with multiple columns using slicing method(rows 0,1 and columns a,b,c

Output:

- a b c
- 0 1 2 3
- 1 10 20 30

Display rows using iloc method:-

This method is used when DataFrame object does not have row and column labels or even we may not remember them. It works on numeric index.

Svntax:-

<DataFrame

object>.iloc[<startrowindex>:<endrowindex>,< startcolumnindex>:<endcolumnindex>]

Examples:

print(df.iloc[0:2,1:3]) *# display rows exist* on index 0,1 and columns exist on index 1,2

Output:

b c 0 2 3 1 20 30 print(df.iloc[0:2,:]) # display rows exist on index 0,1 with all columns **Output:** a b c d e

0 1 2 3 4 5 2 10 20 30 40 50

Difference between loc and iloc method:-

In loc method both start label and end label are included but in iloc method end index is excluded when given as strat:end.

Operations on rows and columns in DataFrames:-We can perform some basic operations on rows and columns of a DataFrame like selection, deletion, addition, and renaming

import pandas as pd

dict={ 'Arnab': pd.Series([90, 91, 97], index=['Maths','Science','Hindi']),

'Ramit': pd.Series([92, 81, 96], index=['Maths','Science','Hindi']),

'Samridhi': pd.Series([89, 91, 88], index=['Maths','Science','Hindi']),

'Riya': pd.Series([81, 71, 67], index=['Maths','Science','Hindi']),

'Mallika': pd.Series([94, 95, 99], index=['Maths','Science','Hindi']) }

ResultDF = pd.DataFrame(dict)

print(ResultDF)

Output:

	Arnab	RamitS	Samridhi	Riya	Mallika
Maths	90	92	89	81	94
Science	e 91	81	91	71	95
Hindi	97	96	88	67	99
>>>					

Adding a New Column to a DataFrame: To

add a new column to a DataFrameResultDFwe can write the following statement:

>>>ResultDF['Radha']=[89,78,76] 0r ResultDF.loc[:,'Radha']=[89,78,76] 0r ResultDF.at[:,'Radha']=[89,78,76] >>>print(ResultDF) or **Output:-**

	Arnal	b Ra	mitSam	ridhi	Riya	
Mallika	n Ra	dha				
Maths	90	92	89	81	94	89
Science	91	81	91	71	95	78
Hindi	97	96	88	67	99	76

Note: Assigning values to a new column label that does not exist will create a new column at the end If already exists then the assignment statement will update the values of the already existing column

94

95

99

3 6 11.1

89

78

76

81

71

67

Example : ResultDF['Ramit']=[99, 98, 78] >>print(ResultDF) **Output:** Arnab RamitSamridhi Riya Mallika Radha 99 89 Maths 90 91 98 91 Science 78 88 Hindi 97 Adding a New Row to a DataFrame: To add a new row to a DataFrame we can use the DataFrame.loc[] method. Suppose we want to add English marks in above DataFrame, we can write the following statement:

ResultDF.loc['English'] = [85, 86, 83, 80, 90, 89] >>print(ResultDF)

0r

ResultDF.at['English'] = [85, 86, 83, 80, 90, 89] >>print(ResultDF)

· 11 · D·

• • •

Output:

	Arnab	Ramit	Samridhi	кіуа	Mallik	ka
Radha						
Maths	90	99	89	81	94	89
Science	e 91	98	91	71	95	78

Hindi	97	78	88	67	99	76	Out
English	n 85	86	83	80	90	89	Del
DataFrame.loc[] method can also be used to change the data values of a row to a particular value.							
Example: to set marks in 'Maths' for all columns to 0: >>>ResultDF.loc['Maths']=0 >>>print(ResultDF) Output: Arnab RamitSamridhi Riya Mallika							Sel use <di 2>, Exa</di
Maths Science	0 91	0 98	0 91	0 71	0 95	0 78	
Hindi	97 97	78	88	67	99	76	Dei
>>>Res	o5 sultDF	[:]= 0	85 # Set	t all val	ues in	09	Mu
Result	DF to (sultDF	0					Kol
	Mallik	Arnab a Rac) Rami lha	t Samri	idhi I	Riya	Sel Dat the
Maths	0 0	0	0	0	0	0	<di _col</di
Science	0 0	0	0	0	0	0	or
Hindi	0	0 0	0	0	0	0	<di ind ex></di
English	0	0 0	0	0	0	0	Exa
Selecti	ng / A	ccessi	ng Dat	a from	DataF	rame :	Out
DataFı	ame :	DF5					
		Popul	ation	Hospi	tal S	Schools	Mu
Delhi		10927	7986	189		7916	Exa
Mumba	ni	12691	1836	208		8508	Out
Kolkata	a	46313	892	149		7226	
Selecting / Accessing a column: Just use the following syntax							
<pre><df object="">[column name] or</df></pre>							
<df_object>.<column_name></column_name></df_object>							

Example : >>>DF5['Population'] or >>>DF5.Population

Output:-

Delhi	10927986
Mumbai	12691836
Kolkata	4631392

Selecting / Accessing multiple columns: Just use the following syntax

<DF_object>[[<column_name1>,<column_name 2>,<column_name3>.....]]

Example : >>>DF5[['Population', 'Hospital']]

Output:-	Population	Hospital
Delhi	10927986	189
Mumbai	12691836	208
Kolkata	4631392	149

Selecting /Accessing a subset from a DataFrame using Row / Column Names: Use the following syntax :-

<DF_object>.loc[<start_row>:<end_row>,<start _column>:<end_column>]

<DF_object>.iloc[<start_row_index>:<end_row_ index>,<start_column_index>:<end_column_ind ex>]

Example 1.>>>DF5.loc['Mumbai':'Kolkata' , :]

Output:

	Population	Hospital	Schools	
ımbai	1269183	5 208	850	8

Example 2. >>>DF5.iloc[0:2,0:2]

Output: -

	Population	Hospital
elhi	10927986	189
lumbai	12691836	208

Deleting Rows or Columns from a

DataFrame: DataFrame.drop() method is used to delete rows and columns from a DataFrame. To delete a row set the parameter axis=0 and for deleting a column set axis=1. Consider the following DataFrame:

	Arnab	RamitSamridhi	Riya	Mallika
Radha	l			

Maths	90	99	89	81	94	89	
Science	91	98	91	71	95	78	
Hindi	97	78	88	67	99	76	
English	85	86	83	80	90	89	

To delete the row with label 'Science' we can write the following statement:

>>ResultDF = ResultDF.drop('Science',
axis=0)

>>>ResultDF

Output : Arnab RamitSamridhi Riya Mallika Radha

Maths	90	99	89	81	94	89
Hindi	97	78	88	67	99	76
English	85	86	83	80	90	89

To delete the columns having labels 'Samridhi', 'Ramit' and 'Riya': we can write the following statement:-

>>ResultDF =
ResultDF.drop(['Samridhi','Ramit','Riya'],
axis=1)

>>>ResultDF

Output:Arnab Mallika Radha

Maths	90	94	89	
Hindi	97	99	76	
English	85	90	89	

Renaming Row Labels of a DataFrame: DataFrame.rename() method is used to rename the row and column label. To rename the row indices Maths to sub1, Hindi to sub2 in above DataFrame we can write the following statement:-

ResultDF=ResultDF.rename({'Maths':'Sub1', 'Hindi':'Sub2'}, axis='index')

Output:ArnabMallikaRadhaSub1909489Sub2979976English859089

Note: The parameter axis='index' is used to specify that the row label is to be changed and axis='columns' to specify that the column label is to be changed

Renaming Column Labels of a DataFrame:

ResultDF=ResultDF.rename({'Arnab':'Student1 ','Mallika':'Student2','Radha':'Student3'}, axis='columns')

>>>print(ResultDF)

Output: Student1 Student2 Student3

Sub1	90	94	89
Sub2	97	99	76
English	85	90	89

>>>

Operations on rows and columns in

DataFrames:-We can perform some basic operations on rows and columns of a DataFrame like selection, deletion, addition, and renaming

import pandas as pd

dict={ 'Arnab': pd.Series([90, 91, 97], index=['Maths','Science','Hindi']),

'Ramit': pd.Series([92, 81, 96], index=['Maths','Science','Hindi']),

'Samridhi': pd.Series([89, 91, 88], index=['Maths','Science','Hindi']),

'Riya': pd.Series([81, 71, 67], index=['Maths','Science','Hindi']),

'Mallika': pd.Series([94, 95, 99], index=['Maths','Science','Hindi']) }

ResultDF = pd.DataFrame(dict)

print(ResultDF)

Print(ResultDF)

16 KVS REGIONAL OFFICE, JAIPUR | SUBJECT-INFORMATICS PRACTICES (TERM-I SESSION 2021-22)

Output:

	Arnab	Ramit	Samridhi	Riya	Mallika
Maths	90	92	89	81	94
Science	e 91	81	91	71	95
Hindi	97	96	88	67	99
>>>					

Adding a New Column to a DataFrame: To add a new column to a DataFrameResultDFwe can write the following statement:

>>>ResultDF['Radha']=[89,78,76]

0r

ResultDF.loc[:,'Radha']=[89,78,76]

0r

ResultDF.at[:,'Radha']=[89,78,76]

>>>print(ResultDF)

or

Output:-

	Arnab	Ramit	Samridhi	Riya	Mallika	Radha
Maths	90	92	89	81	94	89
Science	91	81	91	71	95	78
Hindi	97	96	88	67	99	76

Note: Assigning values to a new column label that does not exist will create a new column at the end If already exists then the assignment statement will update the values of the already existing column

Example :

ResultDF['Ramit']=[99, 98, 78]

>>print(ResultDF)

Output:

Arnab R	lamit	Samri	ka Rad	lha		
Maths	90	99	89	81	94	89
Science	91	98	91	71	95	78
Hindi	97	78	88	67	99	76

Adding a New Row to a DataFrame: To add a new row to a DataFramewe can use the **DataFrame.loc[]** method.

Suppose we want to add English marks in above DataFrame, we can write the following statement:

ResultDF.loc['English'] = [85, 86, 83, 80, 90, 89]

>>print(ResultDF)

0r

ResultDF.at['English'] = [85, 86, 83, 80, 90, 89]

>>>print(ResultDF)

Output:

Arnab RamitSamridhi Riya Mallika Radha

Maths	90	99	89	81	94	89
Science	91	98	91	71	95	78
Hindi	97	78	88	67	99	76
English	85	86	83	80	90	89

DataFrame.loc[] method can also be used to change the data values of a row to a particular value.

Example: to set marks in 'Maths' for all columns to 0:

>>>ResultDF.loc['Maths']=0

>>print(ResultDF)

Output:

Arnab RamitSamridhi Riya Mallika Radha

Maths	0	0	0	0	0	0
Science	91	98	91	71	95	78
Hindi	97	78	88	67	99	76
English	85	86	83	80	90	89

>>ResultDF[:] = 0 # Set all values in
ResultDF to 0

```
>>>ResultDF
```

Arnab Ramit Samridhi Riya Mallika Radha

Maths	0	0	0		0 ()	0	0
Science	0 Hindi 0	0 0	0 0	0	0 0	0	0 0	0 0
English	0	0	0	0	0		0	0

Selecting / Accessing Data from DataFrame :

DataFrame : DF5

Population	Hospital	Schools
10927986	189	7916
12691836	208	8508
	Population 10927986 12691836	Population Hospital 10927986 189 12691836 208

Kolkata4631392 149 7226

Selecting / Accessing a column: Just use the following syntax

<DF_object>[column_name] or <DF_object>.<column_name>

Example : >>>DF5['Population'] or >>>DF5.Population

Output:-

Delhi	10927986

Mumbai 12691836

Kolkata 4631392

Selecting / Accessing multiple columns: Just use the following syntax

<DF_object>[[<column_name1>,<column_name 2>,<column_name3>.....]]

Example : >>>DF5[['Population', 'Hospital']]

Output:-	Population	Hospital
Delhi	10927986	189
Mumbai	12691836	208
Kolkata	4631	392 149

Selecting /Accessing a subset from a DataFrame using Row / Column Names: Use the following syntax :-

<DF_object>.loc[<start_row>:<end_row>,<start _column>:<end_column>] or

<DF_object>.iloc[<start_row_index>:<end_row_ index>,<start_column_index>:<end_column_ind ex>]

Example 1.>>>DF5.loc['Mumbai':'Kolkata' , :] Output:

	Population	Hospital	Schools
Mumbai	12691836	208	8508
Example Output: -	2. >>>DF5.iloc[[0:2,0:2]	
	Population	n Hospi	tal
Delhi	10927986	5 189	
Mumbai	12691836	208	

Deleting Rows or Columns from a DataFrame: DataFrame.drop() method is used to delete rows and columns from a DataFrame. To delete a row set the parameter axis=0 and for deleting a column set axis=1. Consider the following DataFrame:

Arnab RamitSamridhi Riya Mallika Radha

Maths	90	99	89 E	81 94	89
Science	91	98	91	71 95	78
Hindi	97	78	88 6	7 99	76
English	85	86	83 8	30 90	89

To delete the row with label 'Science' we can write the following statement:

>>ResultDF = ResultDF.drop('Science',
axis=0)

>>>ResultDF

Output : Arnab RamitSamridhi Riya Mallika Radha

Maths	90	99	89	81	94
89					

Hindi 76	97	78	88	67	99
English 89	85	86	83	80	90
To delete 'Ramit' au statemen >>Resul ResultDF axis=1) >>Resul	the co nd 'Riy t:- ltDF = .drop(olumns h va': we ca ['Samrid	aving la in write hi','Ran	bels 'S the fol nit','Riy	amridhi', llowing va'],

Output:	Arnab	Mallika	Radha
Maths	90	94	89
Hindi	97	99	76
English	85	90	89

Print(ResultDF)

Output:		Arnab	Mallika	Radha
Sub1	90	94	89	
Sub2	97	99	76	
English	85	90	89	

Note: The parameter axis='index' is used to specify that the row label is to be changed and axis='columns' to specify that the column label is to be changed

Renaming Column Labels of a DataFrame:

ResultDF=ResultDF.rename({'Arnab':'Student1 ','Mallika':'Student2','Radha':'Student3'}, axis='columns')

Renaming Row Labels of a DataFrame:

DataFrame.rename() method is used to rename the row and column label. To rename the row indices Maths to sub1, Hindi to sub2 in above DataFrame we can write the following statement:-

ResultDF=ResultDF.rename({'Maths':'Sub1', 'Hindi':'Sub2'}, axis='index')

>>print(ResultDF)

Output: Student1 Student2 Student3

Sub1	90	94	89
Sub2	97	99	76
English	85	90	89

>>>

Indexing and Boolean indexing:-

In Boolean indexing, we select data based on the actual values of the data and not on their row/column labels or integer locations. If we provide list of Boolean values as index then only those rows will be selected where True is stored. Consider following code for the **df1**

	Hindi	English	IP
Aditya	34	23	67
Aman	34	85	56
Rajesh	60	80	91
Mohit	45	21	32

print(df1[[True,False,False,True]])

OUTPUT

	Hindi	English	IP
Aditya	34	23	67
Mohit	45	21	32

Consider the following command df1['English']>50 is will result a Series of **False, True, True, False,** so this Boolean expression can be used as index, hence df1[df1['English']>50] will select the rows where English marks are more than 50.

OUTPUT				
Hindi English IP				
Aman	34	85	56	
Rajesh	60	80	91	

Find the details of student who secured 34 marks in Hindi

df1['Hindi']==34 will result Series of [True,True,False,False]

so df1[df1['Hindi']==34] will select the rows where 34 marks is stored in Hindi

OUTPUT

	Hindi	English	IP	
Aditya	34	23	67	
Aman	34	85	56	

Find the details of student who secured marks is IP subject which is more than average marks of IP subject

df1['IP'].mean() will return average marks for IP which is 61.5

so df1['IP']>df1['IP'].**mean()** will return Series of [True,False,True,False]

So this code can be used as index to get desired result

Hence df1[df1['IP']>df1['IP'].mean()]

output

	Hindi	English	IP
Aditya	34	23	67
Rajesh	60	80	91

We can include specific column(s) in our output in two ways

To display only IP column in place of all columns we can modify above code as given below df1['IP'][df1['IP']>df1['IP'].mean()]

OR

df1[df1['IP']>df1['IP'].mean()]**['IP']**

Output

Aditya 67 Rajesh 91 Name:IP, dtype: int64 If Hindi and IP marks to be displayed for the same problem stated above the code will be

df1**[['Hindi','IP']]**[df1['IP']>df1['IP'].mean()]

OR df1[df1['IP']>df1['IP'].mean()]**[['Hindi','IP']]**

output

	Hindi	IP
Aditya	34	67
Rajesh	60	91

Data Visualization: -

Data Visualization

- Data Visualization refers to the graphical or visual representation of data and information using visual elements like charts, graphs, maps etc.
- Data visualization is the discipline of trying to expose the data to understand it by placing it in a visual context.
- Its main goal is to distill large datasets into visual graphics to allow for easy understanding of complex relationships within the data.

Purpose of Data visualization

- Better analysis
- Quick action
- Identifying patterns
- Finding errors
- Understanding the story
- Exploring business insights
- Grasping the latest trends plotting library

Anatomy of a Chart

Introduction to matplotlib

- matplotlib.pyplot is a collection of functions for 2D plotting.
- Some of the types of plots: Line, Bar, Histogram, Pie and Boxplot.

Matplotlib – pyplot features

PyPlot is a collection of methods within matplotlib library of python which allows users to construct 2D plots easily and interactively.

- Drawing plots can be drawn based on passed data through specific functions.
- Customization plots can be customized as per requirement after specifying it in the arguments of the functions. Like color, style (dashed, dotted), width; adding label, title, and legend in plots can be customized.

- **Saving** After drawing and customization plots can be saved for future use.
- **Figure**: Pyplot by default plots every chart into an area called Figure. A figure contains other elements of the plot in it.
- Axes: The axes define the area (mostly rectangular in shape for simple plots) on which actual plot (line or bar or graph etc.) will appear. Axes have properties like label, limits and tick marks on them.

There are two axes in a plot:

(i) X-axis the horizontal axis,

ii) Y - axis the vertical axis

a) **Axis Label**: It defines the name for an axis. It is individually defined for X– axis and Y–axis each.

b) Limits: These define the range of values and number of values marked on X-axis and Y - axis.
c) Tick_Marks: The tick marks are individual point marked on the X - axis or Y - axis.

Title: This is the text that appears on the top of the plot. It defines what the chart is about.

Legends: These are different colors that identify different sets of data plotted on the plot. The legends are shown in a corner of the plot. We use legend as following types:

plt.legend (loc="upper left") or plt.legend (loc=2) E.g.

To import the library for plotting

import matplotlib.pyplot as pl **Basic steps to follow while plotting**:

(a) Choose appropriate plot type and then the **function**

- Line plot: plot ()
- Bar plot: bar () and barh()
- Histogram: hist ()

(b) Understand the data and assign the legend values

- assign the axis labels
- assign plot title

Different color codes:						
Character	Color	Character	Color	Character		Color
'b'	Blue	'm'	Magenta	'c'	Cyan	
'g'	Green	'y'	Yellow	'w'	White	
'r'	Red	'k'	Black			

Line Plot:

Definition: A line plot/chart is a graph that shows the frequency of data occurring along a number line.

Eg.

import matplotlib.pyplot as pl
x = [2,4,6,3,8]
y = [42, 45, 21, 11, 32]
pl.plot(x, y,'r', label = "Sales", linewidth =
4,color='cyan')
pl.title ("Test Plot", loc="right")
pl.xlabel ("X - AXIS")
pl.ylabel ("Y - AXIS")
pl.legend ()
pl.show ()

Multiple line plots

In this we will take help of two plot functions to make comparison between two line plots. E.g.

import numpy as np

import matplotlib.pyplot as plt year = [2017, 2018, 2019, 2020, 2021] Sciencepasspercentage = [90, 92, 94, 95, 97] commercepasspercentage = [89, 91, 93, 95, 98] plt.plot (year, Sciencepasspercentage, color='red') plt.plot (year, commercepasspercentage, color='green') plt.xlabel ('Year') plt.ylabel ('Pass percentage') plt.title ('KV Alwar Science vs Commerce PASS % till 2021') plt.show ()

import matplotlib.pyplot as plt year = [2016, 2017, 2018, 2019, 2020] Indianavgscore = [302,305,290,301,312] Englandavgscore = [310,287,306,296,320] plt.plot (year, Indianavgscore, color='red', marker='s', label='India') plt.plot (year, Englandavgscore, color='green', marker='*', label='England') plt.xlabel ('Countries') plt.ylabel('Avg Score in Cricket Match for that year') plt.title ('India vs England avg. Score comparison') plt.legend () plt.show ()

To change the line style

We can add following additional optional argument in plot (): **linestyle or ls = ['solid'** | **'dashed'** | **'dashdot'** | **'dotted'**]

If we apply the customization for line style in above example then, we will apply the linestyle type in both the plot statements. E.g.

- plt.plot (year, Indianavgscore, color='red', marker='s', label='India',linestyle='dashed')
- plt.plot (year, Englandavgscore, color='green', marker='*', label='England', linestyle='dotted')

Bar Plot:

Definition: A graph drawn using rectangular bars to show how large each value is. The bars can be horizontal or vertical. E.g. import matplotlib.pyplot as pl x = ['English','Hindi','Maths','Science','SST'] y = [34, 54, 41, 44, 37] pl.bar (x, y, width =0.8, label= "Marks", color='red', edgecolor="black") pl.title ("Marks of 5 subjects of a Student", loc="right") pl.xlabel ("Subject") pl.ylabel ("Marks") pl.legend () pl.show ()

Note: – use barh () for creating horizontal bar graphs. If we apply the barh() in above example, then following figure will be appeared:

Multiple Bar Plots

Eg.

import matplotlib.pyplot as plt from matplotlib.dates import date2num import datetime x = [datetime.datetime (2011, 1, 4, 0, 0)]datetime.datetime (2011, 1, 5, 0, 0), datetime.datetime (2011, 1, 6, 0, 0)] x = date2num(x)y = [4, 9, 2]z = [1, 2, 3]k = [11, 12, 13] ax = plt.subplot(111)ax.bar(x-0.2, y, width=0.2, color='cyan', align='center') ax.bar(x, z, width=0.2, color='magenta', align='center') ax.bar(x+0.2, k, width=0.2, color='brown', align='center') ax.xaxis date() plt.show ()

E.g.-We can also use arange() function to generate the data. import matplotlib.pyplot as plt

import numpy as np label = ['Prem', 'Prakash', 'Meena', 'Raj', 'Saket', 'Sulachna'] per = [94, 85, 45, 25, 50, 54] index = np.arange (len(label)) clr=['g', 'b','r', 'cyan', 'magenta','y'] plt.bar (index, per, color=clr) plt.xlabel ('Student Name', fontsize=5) plt.ylabel ('Percentage', fontsize=5) plt.xticks (index, label, fontsize=5, rotation=30) plt.title ('Percentage of Marks achieve by student Class XII') plt.show ()

Histogram:

A histogram is a graphical representation which organizes a group of data points into userspecified ranges.

histtype: ['bar', 'barstacked', 'step', 'stepfilled'], It is optional by default is 'bar' orientation: ['vertical', 'horizontal'] Eg. import matplotlib.pyplot as pl import numpy as np math= [12,23,45,56,57,67,72,83,65,22,87,53,12,90,78, 83, 45, 75, 37, 28] x = np.arange (len(math))freq, bin, patches = pl.hist (math, bins=10,color='red',edgecolor = "black", label = "Math marks") pl.title ("Performance of students", loc="right") pl.xlabel ("Mark in Maths") pl.ylabel ("Number of students") pl.legend () pl.show()

0r

Eg.

import matplotlib.pyplot as plt ages=[2,5,70,40,30,45,50,45,43,40,44,60,7,13,57 ,18,90,77,32,21,20,40] range = (0, 100) bins = 10 plt.hist(ages, bins, range, color = 'cyan', histtype = 'bar', rwidth = 0.8) plt.xlabel ('age') plt.ylabel ('No. of people') plt.title ('My histogram') plt.show ()

Save Plot:

To save any plot we have to use savefig() function E.g. plt.savefig ("plot.png") Here plot.png is the name of the file where plot is saved. Eg. plt.savefig ('Student_Data.pdf') plt.savefig ('Student_Data.svg') plt.savefig ('Student_Data.png')

plt.savefig ('line_plot.jpg', dpi=400, quality=60, optimize=True, progressive=True)

Example of Save Plot with full path

pl.savefig('F:\line_plot.png') here the figure will be saved in F drive with name lineplot of Computer System.

Digital Footprint

A digital footprint, sometimes called digital dossier is a body of data that you create while using the Internet. It includes the websites you visit, emails you send, and information you submit to online services and can be traced back by an individual.

It is of two types:

- 1. Passive digital footprints
- 2. Active digital footprints
- A passive digital footprint is created when data is collected without the owner knowing. A more personal aspect of your passive digital footprint is your search history, which is saved by some search engines while you are logged in.

• Active digital footprints are created when a user, for the purpose of sharing information about oneself by means of websites or social media, deliberately. An "active digital footprint" includes data that you intentionally submit online. Sending an email contributes to your active digital footprint, since you expect the data be seen and/or saved by another person. The more email you send, the more your digital footprint grows.

Publishing a blog and posting social media updates are another popular ways to expand your digital footprint. Every tweet you post on Twitter, every status update you publish on Facebook, and every photo you share on Instagram contributes to your digital footprint.

How to reduce the footprint?

1. Double-check privacy settings

2.Logout after you're done surfing a website 3.Think before putting anything online/public platform

4. Don's post personal information online
Net and Communication Etiquettes

Netiquette is short for "Internet etiquette." Just like etiquette is a code of polite behaviour in society, netiquette is a code of good behaviour on the Internet. This includes several aspects of the Internet, such as email, social media, online chat, web forums, website comments, multiplayer gaming, and other types of online communication. While there is no official list of netiquette rules or guidelines, the general idea is to respect others online.

Below are some examples of rules to follow for good netiquette:

- Avoid posting inflammatory or offensive comments online.
- Respect others' privacy by not sharing personal information, photos, or videos that another person may not want published online.
- Never spam others by sending large amounts of unsolicited email.
- Show good sportsmanship when playing online games, whether you win or lose.
- Don't troll people in web forums or website comments by repeatedly nagging or annoying them.
- Stick to the topic when posting in online forums or when commenting on photos or videos, such as YouTube or Facebook comments.
- Don't swear or use offensive language.
- Avoid replying to negative comments with more negative comments. Instead, break the cycle with a positive post.
- If someone asks a question and you know the answer, offer to help.
- Thank others who help you online.

Data Protection

Data protection refers to the practices, safeguards, and binding rules put in place to protect your personal information and ensure that you remain in control of it.

In short, you should be able to decide whether you want to share some information or not, who has access to it, for how long, for what reason, and who be able to modify some of this information Personal data is any information relating to you, whether it relates to your private, professional, or public life. In the online environment, where vast amounts of personal data are shared and transferred around the globe instantaneously,

It is increasingly difficult for people to maintain control of their personal information. This is where data protection comes in.

Intellectuals Property Rights (IPR)

Intellectual property refers to intangible property that has been created by individuals and corporations for their benefit or usage such as copyright, trademark, patent and digital data.

It is therefore unethical to copy or steal the creativity and efforts of someone else.

Intellectual property is divided into categories which are-

- Industrial property which majorly speaks about protecting inventions on the other hand.
- Copyright majorly protects literary and artistic works.
- •

licensing of intellectual property:

Copyright , Patent and Trademark,

- Code of the software will be protected by a **copyright**.
- Functional expression of the idea will be protected by a **patent**
- The name and logo of the software will come under a registered **trademark**

PLAGIARISM

Plagiarism pronounced as **plei** ·juh·ri·zm

Plagiarism means not giving authors credit after copying that author's work.

It involves lying, cheating, theft and dishonesty.

For example, copying papers written by other people and professional and claims it as written by you can be an example of plagiarism.

It can be classified as:

- Accidental/unintentional
- Deliberate/intentional

<u>Accidental/unintentional</u> <u>Plagiarism</u>: . Involves careless paraphrasing (changing the words or sentence construction of a copied document), quoting text excessively along with poor documentation. Accidental Plagiarism cases are less serious whereas

Deliberate/intentional Plagiarism : Includes copying someone else's work, cutting and passing blocks of text or any kind of information from electronic sources without the permission of the original author. Deliberate plagiarism that may result in serious implications.

HOW TO AVOID PLAGIARISM?

Plagiarism should be avoided by the following simple measures:

- Use your own ideas and words.
- Always provide a reference or give credit to the source from where you have received information.
- Cite the name of the website, a URL or the name of authors, and acknowledge them if you have used their work after rearranging the order of a sentence and changing some of the work.
- Take the information in the form of bulleted notes in your words.
- Use online tools to check for plagiarism.
- Develop your writing skills.

Licensing and copyright

A Software license is a legal permission or right to use or redistribution of that software. The software can run on a certain number of computers as per license agreement.

PROPRIETARY LICENSES:-

Exclusive rights in the software are retained with the owner /developer /publisher. They reserve all the freedom and rights to use and distribute this proprietary software.

PERMISSIVE LICENSES :-

Permissive licenses provide a royalty-free license to do virtually anything with the source code.

28 KVS - Regional Office, JAIPUR | Session 2021-22

They permit using, copying, modifying, merging, publishing, distributing, sublicense and/or selling ,but distribution can only be made without the source code as source code modifications can lead to permissive license violation.

COPYLEFT LICENSE

In the case of copyleft licenses, source code has to be provided.

Distribution and modification of source code is permitted.

COPYRIGHT

It is a form of protection given to the authors of "original works of authorship". This is given in the field of literature, dramatics, music, software, art etc. This protection applies to published as well as unpublished work.

Software copyright is used by software developers and proprietary software companies to prevent the unauthorized copying of their software. Free and open source licenses also rely on copyright law to enforce their terms. Copyright protects your software from someone else copying it and using it without your permission. When you hold the copyright to software, you can-

- Make copies of it.
- Distribute it.
- Modify it

Cyber Crime:

Cybercrime is any criminal offence involves the use of electronic communication, computer or internet. The term "Cybercrime" that covers phishing, Identity theft, credit card frauds, illegal downloading, child pornography, cyber bullying, cyber trolls, cyber stalking, cyber terrorism, distribution of viruses, spam, and industrial intelligence and so on.

1. Identity theft:

When we buy or sell goods using social media or we give out private data to business for the right usage. Personal data or login details cannot be used for harmful reasons like posting comments on someone else with stolen identity is called identity theft.

2. Cyber Trolls:

Posting insulted messages online targeting people is called cyber trolls. It is closely related to cyber bullying.

3. Cyber Bullying:

Harassing people or acting like someone or posting negative comments to someone or acting like someone using modern technologies such as internet, email, cell phone, instant massagers', social networks etc is called as Cyber Bullying.

4. Cyber Stalking:

Cyber stalking is a crime in which the attacker harasses a specific victim using electronic communication such as email or online message. Stalkers know their victims and they attack online instead resolving issues off line.

5. Phishing:

Phishing is a cyber attack that uses email or website as a weapon trick the email recipient into believing that the message is something they want or need — a request from their bank, to click a link or download an attachment. They try to gather personal information or debit/credit card information.

Example: General Public License (GPL), Creative Commons License (CC), Lesser General Public License (LGPL), Mozilla public License (MPL) etc.

6. Child pornography:

Chile Pornography is defined as any visual or written representation including images or video that depicts sexual activity of anyone under the age of 18. Child pornography is sometimes called "child sexual abuse images".

Online Fraud:

Fraud committed using the internet is called online fraud and may occur in many ways

- Non-delivery goods
- Non-existent companies
- Stealing information
- Fraudulent payments etc.

Digital Forensics:

It refers to methods used for interpretation of computer media for digital evidence.

Cyber Law and IT Act:

Cyber law refers to all the legal and regulatory aspects of internet and WWW. Cyber law touches all the transactions and activities of internet, WWW.

In India cyber law was enforced through IT Act, 2000 based on UNCITRAL (United Nations Commission for International Trade Related Laws). It purpose is to provide legal recognition to electronic commerce.

The Act was later amended in December 2008 to provide additional focus on information security i.e. It Act, 2008. Major amended are

Digital Signatures i.e authentication of electronic records.

Electronic Governance i.e. E-documents get legal recognition.

The maximum penalty for any damage to computers is fine up to 1 crore.

Other amended acts such as IPC 1860, 1872, 1891 and 1934.

Technology & Society:

Technologies whose value and impact arise primarily from their use in economic and social sectors. The impacts of ICT have had on the development of economies, societies and culture include

Economic impacts include the globalization of production in goods and services, changes in international trade and distribution network, changes in pattern of consumption, virtualization of some products and behaviors and growing the importance of ICT sector within the world. The economic benefit include

Secure transactions, Ease of availability, Net banking, Global market

Social impact include mass market access to an increased information resources, enhanced, new pattern of work and human settlement and changes in the relationships between government, citizen and the state.

E-Waste Management:

Electronic waste describes discarded electrical or electronic devices. "Electronic waste" may also be defined as discarded computers, office electronic equipment, entertainment device electronics, mobile phones, television sets and refrigerators. This includes used electronics which are destined for reuse, resale, salvage, recycling or disposal.

Electrical and Electronic eq**uipm**ent contains metallic and non-metallic elements such as Copper, Aluminium, Gold, Silver, Palladium, Platinum, Nickel, Tin, Lead, Iron, Sulphur, Phosphorous, Arsenic etc.

The recycle and recovery includes the following unit operations

• Dismantling involves removal of parts containing dangerous substances, parts containing valuable substances.

- Separation of ferrous metal, non-ferrous metal and plastic.
- Repair and reuse.
- Recovery of valuable materials.
- Disposal of dangerous materials.

The e-waste disposal and recycling are very much necessary and important for the benefit of people, environment and the nation. The key benefits are

• Allows for recovery of valuable precious metals

Awareness about health concern related to the usage of technology:-

1<mark>. Digital eye strain</mark>

- Symptoms of digital eye strain may include:
- Blurred vision
- Dry eyes
- Headaches
- Neck and shoulder pain

2. Emotional problems

• Makes you feel anxious or depressed.

3. Sleep problems

4. Musculoskeletal problems

- When you use a Smartphone, the chances are that you're holding your head in an unnatural forward-leaning position.
- This position puts a lot of stress on your neck, shoulders, spine and repetitive strain injuries
- of the fingers, thumbs, and wrists.

5. Negative effects of technology on kids:

- Too much screen time or low-quality screen time may lead to
- Behavioral problems
- less time for play and loss of social skills
- obesity
- sleep problems
- violence

- Protects public health and water quality.
- Creates jobs
- Toxic waste
- Saves landfill space.

Awareness about health concerns related to the usage of Technology

MEASURES TO SAFEGUARD FROM NEGATIVE TECHNOLOGICAL EFFECTS

- Clear your phone of unessential apps to keep you from constantly checking it for updates.
- Take frequent breaks to stretch, create an ergonomic workspace and maintain proper posture while using devices
- Carve out a specific, limited amount of time to use your devices.
- Turn some television time into physical activity time.
- Keep electronic devices out of the bedroom. Charge them in another room. Turn clocks and other glowing devices toward the wall at bedtime.
- Make mealtime gadget-free time.
- Prioritize real-world relationships over online relationships.
- CHECK OUT else you will be WIPED OUT:-
- Technology is a part of our lives. It can have some negative effects, but it can also offer many positive benefits and play an important role in education, health, and general welfare.
- Knowing the possible negative effects can help you take steps to identify and minimize them so that you can still enjoy the positive aspects of technology.

©KENDRIYA VIDYALAY SANGATHAN, JAIPUR REGION