

 1 | KVS – Regional Office, JAIPUR | Session 2021-22

Study Material

KVS RO Jaipur

Computer Science

 2 | KVS – Regional Office, JAIPUR | Session 2021-22

Python Revision: Part 1

Python Fundamentals

1. What is Python:-

·Python is a general-purpose, high level
programming language. It was created by Guido
van Rossum, and released in 1991.

·In order to communicate with a computer system,
we need a computer programming language. This
language may be C, C++, Java, Python or any other
computer language. Here we will discuss Python.

·Python is inspired by two languages – (i) ABC
language which was an optional language of BASIC
language. (ii)Modula-3

2. Why Python:-
· Platform Independent (Cross-Platform)

· Free and Open Source

· simple syntax similar to the English language.

· fewer lines than some other programming

languages. interpreted Language.

· Python can be treated in a procedural way, an

object-orientated way. (OOL and POL.)

3. What can Python do?:-

It is possible to develop various Apps/ Software’s
with Python like–
· Web development

· Machine learning

· Data Analysis

· Scripting

· Game development.

· Embedded applications

· Desktop applications

4. How To Use Python?:-

4.1 Python can be downloaded from
www.python.org. (Standard Installation)

4.2. It is available in two versions-

• Python 2.x • Python 3.x (It is in Syllabus)

OR

Apart from above standard Python. We have
various Python IDEs and Code Editors. Some of
them are as under:-
(i) Anaconda Distribution:- free and open-source
distribution of the Python. having various inbuilt
libraries and tools like jupyter Notebook, Spyder
etc
(ii) PyCharm (iii) Canopy
(iv) Thonny (v) Visual Studio Code
(vi) Eclipse + PyDev (vii) Sublime Text
(viii)Atom (ix) GNU Emacs
(x) Vim (xi) Spyder and many more...

5. Python Interpreter - Interactive And Script
Mode :-

We can work in Python in Two Ways:-
(i) Interactive Mode
(ii) Script Mode

(i) Interactive Mode:- it works like a
command interpreter as shell prompt
works in DOS Prompt or Linux. On each
(>>>) symbol we can execute one by one
command.

(ii) Script Mode:- it used to execute the
multiple instruction (complete program)
at once.

6. Python Character Set:-

Character Set is a group of letters or signs which
are specific to a language. Character set includes
letter, sign, number and symbol.

· Letters: A-Z, a-z

· Digits: 0-9

· Special Symbols: _, +, -, *, /, (, #,@, {, } etc.

· White Spaces: blank space, tab, carriage return,

newline, formfeed etc.

· Other characters: Python can process all

characters of ASCII and UNICODE.

7. Python Tokens:-

Token is the smallest unit of any programming
language. It is also known as Lexical Unit.

Types of token are

 3 | KVS – Regional Office, JAIPUR | Session 2021-22

i. Keywords

ii. Identifiers (Names)

iii. Literals

iv. Operators

v. Punctuators

7.1 Keywords:-

Keywords are reserved words. Each keyword has a
specific meaning to the Python interpreter. As
Python is case sensitive, these cannot be used as
identifiers, variable name or any other purpose
keywords must be written exactly as given below:-

7.2 Identifiers:-

In programming languages, identifiers are names
used to identify a variable, function, or other
entities in a program.

· The rules for naming an identifier in Python are

as follows:

· The name should begin with an uppercase or a

lowercase alphabet or an underscore sign (_).

· This may be followed by any combination of

characters a-z, A-Z, 0-9 or underscore (_). Thus,

an identifier cannot start with a digit.

· It can be of any length. (However, it is preferred

to keep it short and meaningful).

· It should not be a keyword or reserved word.

· We cannot use special symbols like !, @, #, $,

%, etc. in identifiers.

Legal Identifer Names Example:

myvar my_var _my_var myVar
myvar2

Illegal Identifier Names Example:-

2myvar my-var my var=

7.3 Literals/ Values:-

Literals are often called Constant Values. Python
permits following types of literals -

a.–String literals - “Rishaan”

b.–Numeric literals – 10, 13.5, 3+5i

c. –Boolean literals – True or False

d.–Special Literal None

e. –Literal collections

7.4 Operators:-

An operator is used to perform specific
mathematical or logical operation on values. The
values that the operator works on are called
operands

Python supports following types of operators -

Unary Operator
•Unary plus (+)

•Unary Minus (-)

•Bitwise complement (~)

•Logical Negation (not)

Binary Operator
•Arithmetic operator (+, -, *, /, %, **, //)

•Relational Operator(<, >, <=, >=, ==,!=)

•Logical Operator (and, or)

•Assignment Operator (=, /=, +=, -=, *=, %=,

**=, //=)

•Bitwise Operator (& bitwise and, ^ bitwise

xor,|bitwise or)

•Shift operator (<< shift left, >> shift right)

•Identity Operator (is, is not)

•Membership Operator (in, not in)

7.5 Punctuators:-

Punctuators are symbols that are used in
programming languages to organize sentence
structure, and indicate the rhythm and emphasis of
expressions, statements, and program structure.

Common punctuators are: „ “ # $ @ []{}=:;(),

8. Variable:-
· Variables are containers for storing data

values.

 4 | KVS – Regional Office, JAIPUR | Session 2021-22

· Unlike other programming languages,
Python has no command for declaring a
variable.

· A variable is created the moment you first
assign a value to it.

Example:-
x = 5
y = "John"
print(x)
print(y)

· Variables do not need to be declared with any
particular type and can even change type after
they have been set.

x = 4 # x is of type int
x = "Sally" # x is now of type str
print(x)

· String variables can be declared either by using
single or double quotes:

x = "John"
is the same as
x = 'John'

Variable Names

A variable can have a short name (like x and y) or a
more descriptive name (age, carname,
total_volume).

Rules for Python variables:
· A variable name must start with a letter or the

· underscore character

· A variable name cannot start with a number

· A variable name can only contain alpha-numeric

characters and underscores (A-z, 0-9, and _)

· Variable names are case-sensitive (age, Age and

AGE are three different variables)

Output Variable:-

The Python print statement is often used to output
variables. To combine both text and a variable,
Python uses the , character:

x = "awesome"
print("Python is " , x)

Display Multiple variable:-
x = "awesome“
y=56
print(“Value of x and y is=" ,x,y)

9. Data Type:-

Every value belongs to a specific data type in
Python. Data type identifies the type of data which
a variable can hold and the operations that can be
performed on those data.

Data Types in Python:-
· Numbers :- int, float and complex.

· List :- [5, 3.4, "New Delhi", "20C", 45]

· Tuple :- (10, 20, "Apple", 3.4, 'a')

· Strings :- str = 'Hello Friend'

· Set:- {2,6,9}

· Dictionary:- {'Fruit':'Apple', 'Climate':'Cold',

'Price(kg)':120}

Mutable and Immutable data type

Mutable:- The values stored can be changes, Size
of object can be changed, e.g. List, Dictionary

Immutable:- The value stored can not be changed,
Size can not be changed, e.g. Tuple, String

10. Expression in python:- An expression is a
combination of values, i.e., constant , variable and
operator.

e.g. Expression 6-3*2+7-1 evaluated as 6

11. Precedence of Arithmetic Operators:-
Precedence helps to evaluate an expression.

12. Comments in python:- Comments are non-
executable statement of python. It increase the
readability and understandability of code.

Types of comment –

i. Single line comment (#) – comments only
single line.

e.g. a=7 # 7 is assigned to variable ‘a’
print(a) # displaying the value stored in ‘a’

ii. Multi-line comment (‘‘‘………..’’’) – Comments
multiple line.

e.g. ‘‘‘Program -1
A program in python to store a value in
variable ‘a’ and display the value stored in it.’’’
a=7
print(a)

 5 | KVS – Regional Office, JAIPUR | Session 2021-22

13. Input and output in python:-

input () method - It is used to take input from
user.

print () method – It is used to display message or
result in output.

Example:-
Name = input (“Enter your name : ”)

Marks = int(input (“Enter your marks ”))

print(“Your name is ”, Name)

print(“You got ”, Marks, “ marks”)

14. Debugging:- Debugging is a process of locating
and removing errors from program.

Python Control Statements

In any programming language a program may
execute sequentially, selectively or iteratively.
Every programming language provides constructs
to support Sequence, Selection and Iteration. In
Python all these construct can broadly categorized
in 2 categories.

Conditional Control Construct

(Selection, teration)

Un-Conditional Control Construct

 (pass, break,continue, exit(), quit())

Python have following types of control statements

1. Selection (branching) Statement

2. Iteration (looping) Statement

3. Jumping (break / continue)Statement

Python Selection Statements

Python have following types of selection
statements

1. if statement

2. if else statement

3. Ladder if else statement (if-elif-else)

4. Nested if statement

If statements

This construct of python program consist of one if
condition with one block of statements. When
condition becomes true then executes the block
given below it.

Syntax:

if (condition):

 Statement(s)

Example:

age=int(input(“Enter Age: “))

if (age>=18):

 print(“You are eligible for vote”)

if(age<0):

 print(“You entered Negative Number”)

if - else statements

This construct of python program consist of one if
condition with two blocks. When condition
becomes true then executes the block given below
it. If condition evaluates result as false, it will
executes the block given below else.

Syntax:

if (condition):

 Statement(s)

else:

 Statement(s)

Example

age=int(input(“Enter Age: “))
if (age>=18):
 print(“You are eligible for vote”)
 else:
 print(“You are not eligible for vote”)

Ladder if else statements (if-elif-else)

This construct of python program consist of more

 6 | KVS – Regional Office, JAIPUR | Session 2021-22

than one if condition. When first condition
evaluates result as true then executes the block
given below it. If condition evaluates result as false,
it transfer the control at else part to test another
condition. So, it is multi-decision making construct.

Syntax:

if (condition-1):

 Statement(s)

elif (condition-2):

 Statement(s)

 elif (condition-3):

 Statement(s)

else:

 Statement(s)

Example:

num=int(input(“Enter Number: “))

 If (num>=0):

 print(“You entered positive number”)

elif (num<0):

 print(“You entered Negative number”)

else:

 print(“You entered Zero ”)

Nested if statements

It is the construct where one if condition take part
inside of other if condition. This construct consist
of more than one if condition. Block executes when
condition becomes false and next condition
evaluates when first condition became true.

So, it is also multi-decision making construct.

Syntax:
 if (condition-1):
 if (condition-2):
 Statement(s)
 else:
 Statement(s)

Example:

num=int(input(“Enter Number: “))

if (num<=0):

 if (num<0):

 print(“You entered Negative number”)

 else:

 print(“You entered Zero ”)

else:

 print(“You entered Positive number”)

Python Iteration Statements

The iteration (Looping) constructs mean to
execute the block of statements again and again
depending upon the result of condition. This
repetition of statements continues till condition
meets True result. As soon as condition meets false
result, the iteration stops.

Python supports following types of iteration
statements

1. while

2. for

Four Essential parts of Looping:

i. Initialization of control variable

ii. Condition testing with control variable

iii. Body of loop Construct

iv. Increment / decrement in control variable

Python while loop

The while loop is conditional construct that
executes a block of statements again and again till
given condition remains true. Whenever condition
meets result false then loop will terminate.

Syntax:

Initialization of control variable

while (condition):

…………………..

Updation in control variable

 7 | KVS – Regional Office, JAIPUR | Session 2021-22

..…………………

Example: Sum of 1 to 10 numbers.

num=1

sum=0

while(num<=10):

 sum + = num

 num + = 1

print(“The Sum of 1- 10 numbers: “,sum)

Python range() Function

The range() function returns a sequence of
numbers, starting from 0 by default, and
increments by 1 (by default), and ends at a
specified number.

Syntax:

range(start value, stop value, step value)

Where all 3 parameters are of integer type

● Start value is Lower Limit

● Stop value is Upper Limit

● Step value is Increment / Decrement

Note: The Lower Limit is included but Upper Limit

is not included in result.

Example

range(5) => sequence of 0,1,2,3,4

range(2,5) => sequence of 2,3,4

range(1,10,2) => sequence of 1,3,5,7,9

range(5,0,-1) => sequence of 5,4,3,2,1

range(0,-5) => sequence of [] blank list

 (default Step is +1)

range(0,-5,-1) => sequence of 0, -1, -2, -3, -4

range(-5,0,1) => sequence of -5, -4, -3, -2, -1

range(-5,1,1) => sequence of -5, -4, -3, -2, -1, 0

 Python for loop

A for loop is used for iterating over a sequence
(that is either a list, a tuple, a string etc.) With for
loop we can execute a set of statements, and for
loop can also execute once for each element in a
list, tuple, set etc.

Example: print 1 to 10 numbers

for num in range(1,11,1):
 print(num, end=” “)

Output: 1 2 3 4 5 6 7 8 9 10

Nested Loops--????

Un- Conditional Control Construct

(pass, break, continue, exit(), quit())

pass Statement (Empty Statement)

The pass statement do nothing, but it used to
complete the syntax of programming concept. Pass
is useful in the situation where user does not
requires any action but syntax requires a
statement. The Python compiler encounters pass
statement then it do nothing but transfer the
control in flow of execution.

Example

a=int(input("Enter first Number: "))

b=int(input("Enter Second Number: "))

 if(b==0):

 pass

else:

 print("a/b=",a/b)

Jumping Statements

● break
● continue

break Statement

The jump- break statement enables to skip over a
part of code that used in loop even if the loop
condition remains true. It terminates to that loop
in which it lies. The execution continues from the
statement which find out of loop terminated by
break.

Continue Statement

Continue statement is also a jump statement. With
the help of continue statement, some of statements

 8 | KVS – Regional Office, JAIPUR | Session 2021-22

in loop, skipped over and starts the next iteration.
It forcefully stop the current iteration and transfer
the flow of control at the loop controlling
condition.

+ive
index 0 1 2 3 4

String
H e l l o

-ive
index -5 -4 -3 -2 -1

String in Python: String is a sequence which is

made up of one or more UNICODE characters.

A string can be created by enclosing one or

more characters in single, double or triple

quote.

For Example:

str = “Manoj” # str is a variable storing a

string. .

str = “M” #String can also be

enclosed in single quotes

Initializing Strings in Python: To initialize string

enclose the character or sequence of characters in

Single or Double Quotes as follows:

str = ‘A’ # String enclosed in Single

Quotes

str= “Manoj” #String enclosed in double

quotes

str = “””This course will introduce the learner

to text mining and text manipulation basics.

 The course begins with an

understanding of how text is handled by

python”””

We can also use str() function to create string:

N = str () # This function will create

an empty string

name = str(12345) # This will store string

“12345”

Table 8.1 Indexing of characters in string 'Hello

World!'

An inbuilt function len() in Python returns the

length of the string that is passed as parameter.

For example:

The length of string str1 = 'Hello World!' is 12.

#gives the length of the string str1

>>> len(str1)

12

>>> n = len(str1)

 #length of the string is assigned to n

>>> print(n)

12

 9 | KVS – Regional Office, JAIPUR | Session 2021-22

>>> str1[n-1] #gives

the last character of the string

'!'

>>> str1[-n] #gives the

first character of the string

'H'

String is Immutable: A string is an immutable data

type, that means the contents of the string cannot be

changed after it has been created. If you try to change,

it would lead to an error.

For Example:

str1 = "Hello World!"

str1[1] = 'a' #if we try to

replace character 'e' with 'a'

TypeError: 'str' object does not support item

assignment

String Operations with different Operators:

Concatenation (+)

To concatenate means to join. Python allows us

to join two strings using concatenation

operator plus which is denoted by symbol (+).

str1 = 'Hello' #First string

>>> str2 = 'World!' #Second

string

>>> str1 + str2 #Concatenated

strings

Output: 'HelloWorld!'

Repetition (*)

Python allows us to repeat the given string

using repetition operator which is denoted by

symbol *.

For example:

>>> str1 = 'Hello'

>>> str1 * 2 #repeat the value of

str1, 2 times

'HelloHello'

>>> str1 * 5 #repeat the value of

str1 5 times

'HelloHelloHelloHelloHello'

Membership Operator (‘in’ and ‘not in’)

Python has two membership operators 'in' and

'not in'. The 'in' operator takes two strings and

returns

True if the first string appears as a substring in

the second string, otherwise it returns False.

>>> str1 = 'Hello World!'

>>> 'W' in str1

True

>>> 'Wor' in str1

True

>>> 'My' in str1

False

The 'not in' operator also takes two strings and

 10 | KVS – Regional Office, JAIPUR | Session 2021-22

returns True if the first string does not appear

as a

substring in the second string, otherwise

returns False.

For Example:

>>> str1 = 'Hello World!'

>>> 'My' not in str1

True

Accessing String with slicing operator “[]”

e.g.

str='Computer Sciene'

 OUTPUT

print('str-', str)

print('str[0]-',

str[0])

print('str[1:4]-',

str[1:4])

print('str[2:]-',

str[2:])

print('str *2-', str

*2)

print("str +'yes'-

", str +'yes')

('str-', 'Computer

Sciene')

('str[0]-', 'C')

('str[1:4]-', 'omp')

('str[2:]-', 'mputer

Sciene')

('str *2-', 'Computer

ScieneComputer

Sciene')

("str +'yes'-", 'Computer

Scieneyes')

String Comparison by using Operator (“==” & “!=”)

The string comparison operator in python is

used to compare two strings.

“==” operator returns Boolean True if two

strings are the same and return Boolean False

if two strings are not the same.

“!=” operator returns Boolean True if two

strings are not the same and return Boolean

False if two strings are the same.

These operators are mainly used along with if

condition to compare two strings where the

decision is to be taken based on string

comparison.

Code:

string1 = "hello"

string2 = "hello, world"

string3 = "hello, world"

string4 = "world"

print(string1==string4)

print(string2==string3)

print(string1!=string4)

print(string2!=string3)

Output:

Escape Sequence Operator “\.”

To insert a non-allowed character in the given

input string, an escape character is used. An escape

character is a “\” or “backslash” operator followed

by a non-allowed character. An example of a non-

allowed character in python string is inserting

double quotes in the string surrounded by double-

 11 | KVS – Regional Office, JAIPUR | Session 2021-22

quotes.

1. Example of non-allowed double quotes

in python string:

Code:

Operator Description

%d Signed decimal integer

%u unsigned decimal integer

%c Character

%s String

%f Floating-point real number

string = "Hello world I am from "India""

print(string)

Output:

2. Example of allowed double quotes with escape

sequence operator:

Code:

string = "Hello world I am from \"India\""

print(string)

Output:

String Formatting Operator “%.”

String formatting operator is used to format a

string as per requirement. To insert another type

of variable along with string, the “%” operator is

used along with python string. “%” is prefixed to

another character indicating the type of value we

want to insert along with the python string. Please

refer to the below table for some of the commonly

used different string formatting specifiers:

Code:

name = "india"

age = 19

marks = 20.56

string1 = 'Hey %s' % (name)

print(string1)

string2 = 'my age is %d' % (age)

print(string2)

string3= 'Hey %s, my age is %d' % (name, age)

print(string3)

string3= 'Hey %s, my subject mark is %f' % (name,

marks)

print(string3)

Output:

Traversing a String:

We can access each character of a string or

https://www.educba.com/escape-sequence-in-c/
https://www.educba.com/escape-sequence-in-c/

 12 | KVS – Regional Office, JAIPUR | Session 2021-22

traverse a string using for loop and while loop.

(A) String Traversal Using for Loop:

>>> str1 = 'Hello World!'

>>> for ch in str1:

 print(ch,end = '')

Hello World! #output of for loop

In the above code, the loop starts from the first

character of the string str1 and automatically ends

when the last character is accessed.

(B) String Traversal Using while Loop:

>>> str1 = 'Hello World!'

>>> index = 0

#len(): a function to get length of string

>>> while index < len(str1):

 print(str1[index],end = '')

 index += 1

Hello World! #output of while loop

Here while loop runs till the condition index <

len(str) is True, where index varies from 0 to

len(str1) -1

String Methods and Built-in Functions:

Python has several built-in functions that allow us

to work with strings. Some of the commonly used

built-in functions for string manipulation.

Built-in Functions Description

String.len() Returns the length of

the string.

String.endswith() Returns True if

a string ends with the given suffix otherwise

returns False

String.startswith() Returns True if

a string starts with the given prefix otherwise

returns False

String.isdigit() Returns “True” if all

characters in the string are digits, Otherwise, It

returns “False”.

String.isalpha() Returns “True” if all

characters in the string are alphabets, Otherwise, It

returns “False”.

string.isdecimal() Returns true if

all characters in a string are decimal.

str.format() It

allows multiple substitutions and value formatting.

String.index() Returns the position

of the first occurrence of substring in a string

string.uppercase() A string must contain

uppercase letters.

string.whitespace() A string containing all

characters that are considered whitespace.

string.swapcase()

 Method converts all

uppercase characters to

lowercase and vice versa.

string.Isdecimal() Returns true if all characters

in a string are decimal

String.Isalnum() Returns true if all the characters

in a given string are alphanumeric.

string.Istitle() Returns True if the string is a

 13 | KVS – Regional Office, JAIPUR | Session 2021-22

titlecased string

String.partition() splits the string at the first

occurrence of the separator and returns a tuple.

String.Isidentifier() Check whether a string is a

valid identifier or not.

String.rindex() Returns the highest index of the

substring inside the string if substring is found.

String.Max() Returns the highest alphabetical

character in a string.

String.min() Returns the minimum alphabetical

character in a string.

String.splitlines() Returns a list of lines in the

string.

string.capitalize() Return a word with its first

character capitalized.

string.expandtabs() Expand tabs in a string

replacing them by one or more spaces

string.find() Return the lowest index in a sub

string.

string.rfind() find the highest index.

string.count() Return the number of (non-

overlapping) occurrences of substring sub in string

string.lower() Return a copy of String, but

with upper case letters converted to lower case.

string.split() Return a list of the words of the

string,If the optional second argument sep is

absent or None

string.rsplit() Return a list of the words of the

string s, scanning s from the end.

rpartition() Method splits the given string into

three parts

string.splitfields() Return a list of the words of the

string when only used with two arguments.

string.join() Concatenate a list or tuple of words

with intervening occurrences of sep.

string.strip() It return a copy of the string with

both leading and trailing characters removed

string.lstrip() Return a copy of the string with

leading characters removed.

string.rstrip() Return a copy of the string with

trailing characters removed.

string.swapcase() Converts lower case letters to

upper case and vice versa.

string.translate() Translate the characters using

table

string.upper() lower case letters converted to

upper case.

string.ljust() left-justify in a field of given width.

string.rjust() Right-justify in a field of given width.

string.casefold() Returns the string in lowercase

which can be used for caseless comparisons.

 14 | KVS – Regional Office, JAIPUR | Session 2021-22

Python Revision: Part 2
LIST

Definition :
 A List is a collection of comma separated
values within a square bracket. Items in a list need
not to be the same.

Features of list

• A List is used to store sequence of values /
items.

• All Elements of a list are enclosed in []
square bracket.

• Items / values are separated by comma.
• Lists are mutable (changeable) in python.

Different type of lists

List of text

Fruit=['Mango','Orange','Apple']

#List of Characters

Grade=['A','B','C']

List of integers

Marks=[75,63,95]

List of floats

Amount=[101.11,125.81,99.99]

List with different data types

Record=[75,'Mango',101.11]

List within a List

list1=[2,3,[2,3]]

List with text splitted into chars

list2=list('IP&CS')

 #Empty list

list3=list()

Creation of list from user input
eval()– this method can be used to accept tuple
from user. Which can be converted to list using
list() method.
E.g.
T=eval(input(“Enter a set of numbers ”))
print(“Tuple is = ”,T)
L=list(T)
print(“List is = ”,L)

Output
Enter a set of numbers 4,7,5,6,9,2
Tuple is= (4,7,5,6,9,2)
List is=[4,7,5,6,9,2]

List Indexing

Here,
 List1 = [12, 3, 43, 23, 33, 65]

Accessing elements from a list

Traversing of list elements
(Iteration/Looping over a list)

List1=[12,3,43,23,33,65]

Method-1
List1 = [12,3,43,23,33,65] both result in same O/P
for i in range(0,len(List1)): 12
 print(List[i]) 3
 43

Method-2 23

List1 = [12,3,43,23,33,65] 33
for x in List1: 65
 print(x)

 15 | KVS – Regional Office, JAIPUR | Session 2021-22

 16 | KVS – Regional Office, JAIPUR | Session 2021-22

SLICING : Accessing a part of a list is known
as slicing.

-9 -8 -7 -6 -5 -4 -3 -2 -1

A M I T J A I N

0 1 2 3 4 5 6 7 8

List1 = ['A', 'M', 'I', 'T', ' ','J','A', 'I', 'N']

Statement Output

print(List1[:]) ['A', 'M', 'I', 'T', ' ', 'J', 'A', 'I', 'N']

print(List1[2:]) ['I', 'T', ' ', 'J', 'A', 'I', 'N']

print(List1[:6]) ['A', 'M', 'I', 'T', ' ', 'J']

print(List1[0:4]) ['A', 'M', 'I', 'T']

print(List1[3:6]) ['T', ' ', 'J']

print(List1[-2:-5]) []

print(List1[-5:-2]) [' ', 'J', 'A']

print(List1[1:7:2])

['M', 'T', 'J']

ADDITION OF ELEMENTS IN LIST:
Two ways to add an item in the list

1. Append command

append() is used to add only one

element at a time.

ListF = [44, 55]

ListF # [44, 55]

ListF.append(77)

ListF # [44, 55, 77]

ListF.append(88,88) # Error

 ListF.append([88, 99]) # [44, 55, 77, [88, 99]]

2. Extend command

extend() is used to add one or

more elements

ListF = [44, 55]

List F # [44, 55]

ListF.extend(77) # Error

ListF.extend([77]) # [44, 55, 77]

 ListF.extend([88, 99]) # [44, 55, 77, 88, 99]

MODIFICATION /UPDATION OF ITEM

ListD= [36, 46, 56, 66, 76] Output

ListD[2] # 56

ListD[2] = 1000 # 56

ListD[2] # 1000

ListD # [36, 46, 1000, 66, 76]

ListD[2:3]= 400,500 # [36, 46, 400, 500, 66, 76]

DELETION OF ELEMENTS FROM LIST

Using del command O/P

List1=[44,55,66,77,88]
del List1[2]
print(List1) [44,55,77,88]
del List1[1:3]
print(List1) [44,88]

Using pop(index) method O/P

L1=['K', 'V', '4']
print(L1.pop()) 4
print(L1.pop(1)) V
print(L1) [‘K’, ‘4’]
print(L1.pop(-1)) 4

OPERATORS
E.g. L1=[23,12,43,22,5,34]
 L2=[4,3,5]

Sl. No. Operator For List
L1 & L2

Output

1 Concatenation‘+
’

L1+L2 [23, 12, 43, 22, 5,
34, 4, 3, 5]

[Start : End : Step]
(Select from start index to end-1 index

number with jump of step)

 17 | KVS – Regional Office, JAIPUR | Session 2021-22

2 Replication/
Repetition ‘*’

L2*3 [4,3,5,4,3,5,4,3,5] 3 Membership ‘ in ‘

and ‘ not in’
(Check presence
of element)

43 in L1
3 not in L2

True
False

METHODS / FUNCTIONS

E.g. L1=[23,12,43,23,5,34]
 L2=[‘K’, ‘V’, ‘S’]

Sl.
No.

Method / Function Example
For given list
L1 & L2

Output

1 index(item)
To display index of an item

L1.index(43) 2

2 insert(index, item)
To add an item at given index

L2.insert(1, ‘A’) ['K','A','V','S']

3 reverse()
Reverse the order of elements

L2.reverse() [‘S’,‘V’,‘A’,‘K’]

4 len(List)
Returns length of list

len(L1) 6

5 sort()
Arrange the elements in
ascending or descending Order

Ascending order

L2.sort()

Descending order

L2.sort(reverse =True)

['A','K','S','V']

['V','S','K','A']

6 count(item)
Counts frequency of an item

L1.count(23) 2

7 remove(item)
Remove the item

L2.remove(‘A’) [‘K’,’V’,’S’]

8 max(list)
Returns maximum value

max(L1) 43

9 min(list)
Returns minimum value

min(L1) 5

Reference Videos:-
List (Part-1) https://youtu.be/J8NQuV4CEfw
List (Part-2) https://youtu.be/pheM8nHPNG4

https://youtu.be/J8NQuV4CEfw
https://youtu.be/pheM8nHPNG4

 18 | KVS – Regional Office, JAIPUR | Session 2021-22

List (Part-3) https://youtu.be/GYptLReCqaw

https://youtu.be/GYptLReCqaw

 19 | KVS – Regional Office, JAIPUR | Session 2021-22

TUPLE
Definition : Python Tuple is used to store the
sequence of immutable Python objects. The tuple
is similar to lists since the value of the items
stored in the list can be changed, whereas the
tuple is immutable, and the value of the items
stored in the tuple cannot be changed.

Creating Tuple

Empty tuple: An empty tuple can be created as

follows.

T1 = ()

Initialing Tuple with values:

Example

rgb = ('red', 'green', 'blue')

numbers = (3,)

‘’’a tuple with one element, you need to include a

trailing comma after the first element’’’

tuple1 = (10, 20, 30, 40, 50, 60)

Understanding Index numbers

 Z=(3,7,4,2)

z = (3, 7, 4, 2) # Access the first item

of a tuple at index 0

print(z[0]) #Output 3

z = (3, 7, 4, 2) # Accessing the last

item of a tuple

print(z[3]) #Output 2

OR

print(z[-1]) #Output 2

Tuple slices

print(z[0:2]) #output would be 3,7

print(z[:3]) #Output 3,7,4

print(z[-4:-1]) #Output 3,7,4

print(z[-1:-3:-1]) #Output 2,4

Basic Tuple operations

The operators like concatenation (+), repetition
(*), Membership (in) works in the same way as
they work with the list. Consider the following
table for more detail.

Let's say Tuple t = (1, 2, 3, 4, 5) and Tuple t1 = (6,
7, 8, 9) are declared.

Operator Description Example

Repetition enables the
tuple elements
to be repeated
multiple times.

T1*2 = (1, 2, 3,
4, 5, 1, 2, 3, 4, 5)

Concatena
tion

It concatenates
the tuple on
either side of
the operator.

T1+T2 = (1, 2, 3,
4, 5, 6, 7, 8, 9)

Membersh
ip

It returns true if
a particular
item exists in
the tuple else
false

print (2 in T1)
prints True.

Iteration The for loop is
used to iterate
over the tuple
elements.

for i in T1:
 print(i)
Output
1
2
3

 20 | KVS – Regional Office, JAIPUR | Session 2021-22

4
5

List vs. Tuple

S
N

List Tuple

1 The literal syntax of
list is shown by the
[].

The literal syntax of
the tuple is shown by
the ().

2 The List is mutable. The tuple is
immutable.

3 The List has a
variable length.

The tuple has the fixed
length.

4 The list provides
more functionality
than a tuple.

The tuple provides
less functionality than
the list.

5 The list is used in
the scenario in
which we need to
store the simple
collections with no
constraints where
the value of the
items can be
changed.

The tuple is used in
the cases where we
need to store the read-
only collections i.e.,
the value of the items
cannot be changed. It
can be used as the key
inside the dictionary.

Nested Tuple

A tuple can be defined inside another tuple; called

Nested tuple. In a nested tuple, each tuple is

considered as an element.

The for loop will be useful to access all the

elements in a nested tuple.Read more on

Sarthaks.com -

https://www.sarthaks.com/1017899/what-is-

nested-tuple-explain-with-an-example

Example 1:

Toppers = ((“Vinodini” , “XII-F”, 98.7),

(“Soundarya” , “XII-H” , 97.5), (“Tharani” , “XII- F”,

95.3), (“Saisri” , “XII-G” , 93.8))

for i in Toppers:

print(i)

Output:

(‘Vinodini’ , ‘XII-F’, 98.7)

(‘Soundarya’ , ‘XII-H’ , 97.5)

(‘Tharani’ , ‘XII-F’, 95.3)

(‘Saisri’ , ‘XII-G’ , 93.8)

Example 2:

tup = (50,60,70,80,90, (200, 201))

The tuple (200, 201) is called a nested tuple as it

is inside another tuple.

The nested tuple with the elements (200, 201) is

treated as an element along with other elements

in the tuple 'tup'. To retrieve the nested tuple, we

can access it as an ordinary element as tup[5] as

its index is 5.

Built-in Tuple Methods

Method Description

count() Returns the number of times a
specified value occurs in a tuple

index() Searches the tuple for a specified
value and returns the position of
where it was found

Some function that are useful to work with
tuple

 21 | KVS – Regional Office, JAIPUR | Session 2021-22

1. len((1, 2, 3, [6, 5]))

Output: 4 # It returned 4, not 5, because the list
counts as 1.

2. max()

It returns the item from the tuple with the highest
value.

 a=(3,1,2,5,4,6)
 max(a)

Output : 6

3. min()

Like the max() function, the min() returns the
item with the lowest values.

 a=(3,1,2,5,4,6)
min(a)

Output: 1

4. sum()

This function returns the arithmetic sum of all the
items in the tuple.

a=(3,1,2,5,4,6)
sum(a)

Output: 21

5. tuple()

Creating an empty tuple

t1 = tuple()

creating a tuple from a list

t2 = tuple([1, 4, 6])

creating a tuple from a string

t1 = tuple('Python')

creating a tuple from a dictionary

t1 = tuple({1: 'one', 2: 'two'})

6. count()

Return the number of times the value X appears in
the tuple:

thistuple = (1, 3, 7, 8, 7, 5, 4, 6, 8, 5)
x = thistuple.count(5)
print(x)

Output: 2

7. index()

The index() method returns the index of the
specified element in the tuple.

Example 1: Find the index of the element

vowels = ('a', 'e', 'i', 'o', 'i', 'u')
index = vowels.index('e')
print('The index of e:', index)
index = vowels.index('i')
print('The index of i:', index)

Output

The index of e: 1
The index of i: 2

Programs on Tuples

1. Write a Python program to test if a variable
is a tuple or not.

Ans.

x = ('tuple', False, 3.2, 1)
if type(x) is tuple:
 print('x is a tuple')
else:
 print('Not a tuple.')

2. Write a Python program which accepts a
sequence of comma-separated numbers from
user and generate a list and a tuple with those
numbers.

Ans.

values = input("Enter some no. separated by , ")
list = values.split(",")
tuple = tuple(list)
print('List : ',list)
print('Tuple : ',tuple)

 22 | KVS – Regional Office, JAIPUR | Session 2021-22

3. Write a python program to print sum of
tuple elements.

Ans.

test_tup = (7, 5, 9, 1, 10, 3)
print("The original tuple is : " + str(test_tup))
res = sum(list(test_tup))
 # printing result
print("The sum of all tuple elements are : " +
str(res))

4. Write a python program to Check if the given
element is present in tuple or not.

Ans.

test_tup = (10, 4, 5, 6, 8)
printing original tuple
print("The original tuple : " + str(test_tup))
N = int(input("value to be checked:"))
res = False
for ele in test_tup :
 if N == ele :
 res = True
 break
print("Does contain required value ? : " + str(res))

5. Write a Python program to find the length of
a tuple.

Ans

#create a tuple
tuplex = tuple("KVS RO JAIPUR")
print(tuplex)
#use the len() to find the length of tuple
print(len(tuplex))

6. Write a Python program calculate the
product, multiplying all the numbers of a given
tuple.

Ans

nums = (4, 3, 2, 2, -1, 18)
print ("Original Tuple: ")

print(nums)
temp = list(nums)
product = 1
for x in temp:
 product *= x
print(product)

7.Write a Python program to calculate the
average value of the numbers in a given tuple
of tuples.

Ans

nums = ((10, 10, 10, 12), (30, 45, 56, 45),
 (81, 80, 39, 32), (1, 2, 3, 4))

print ("Original Tuple: ")
print(nums)
result = [sum(x) / len(x) for x in zip(*nums)]
print("\nAverage of numbers:\n",result)

8. Write a Python program to check if a
specified element presents in a tuple of tuples.

Ans:

colors = (

 ('Red', 'White', 'Blue'),

 ('Green', 'Pink', 'Purple'),

 ('Orange', 'Yellow', 'Lime'),

)

print("Original list:")

print(colors)

c1 = 'White'

result = any(c in tu for tu in colors)

print(result)

 23 | KVS – Regional Office, JAIPUR | Session 2021-22

DICTIONARY
Key points: -

- Python Dictionaries are a collection of

some key:value pairs.

- Python Dictionaries are unordered

collection

- Dictionaries are mutable means values in a

dictionary can be changed using its key

- Keys are unique.

- Enclosed within brace { }

Working with dictionaries

Creating

Python

Dictionary

dict()

method

empty dictionary

my_dict = {}

dictionary with integer keys
my_dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys
my_dict = {'name': 'John', 1: [2, 4, 3]}

using dict()
my_dict = dict({1:'apple', 2:'ball'})

Accessing

Elements

from

Dictionary

get()

method

my_dict = {'name': 'Jack', 'age': 26}

print(my_dict['name'])

print(my_dict.get('age'))

Trying to access keys which doesn't

exist returns None

print(my_dict.get('address'))

KeyError

print(my_dict['address'])

Output: -

Jack

26
None

Traceback (most recent call last):

 File "<string>", line 15, in <module>
 print(my_dict['address'])

KeyError: 'address'

Changing # Changing and adding Dictionary

and Adding

Dictionary

elements

Elements

my_dict = {'name': 'Jack', 'age': 26}

update value

my_dict['age'] = 27

print(my_dict)

add item

my_dict['address'] = 'Downtown'

print(my_dict)

Output: -

{'name': 'Jack', 'age': 27}
{'name': 'Jack', 'age': 27, 'address':

'Downtown'}

Removing

elements

from

Dictionary

pop()

method

popitem
method()

clear()
method

del function

Removing elements from a

dictionary
squares = {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

remove a particular item, returns its

value

print(squares.pop(4))

print(squares)

remove an arbitrary item, return

(key,value)

print(squares.popitem())
print(squares)

remove all items
squares.clear()

print(squares)

delete the dictionary itself
del squares

Output: -
16

{1: 1, 2: 4, 3: 9, 5: 25}

(5, 25)

{1: 1, 2: 4, 3: 9}
{}

len() –

Finding

number of

items in
dictionary

dict={'Name':'Aman','Age':37

}

print("Length: - ", len(dict))

OUTPUT

Length:- 2

keys() - x=dict(name=“Aman",age=37,country=“

India")

print(x.keys())

 24 | KVS – Regional Office, JAIPUR | Session 2021-22

returns all

the available

keys

OUTPUT

dict_keys(['country','age','name'])

values()-

returns all

the available
values

x=dict(name=“Aman",age=37,country=“

India")

print(x.values())

OUTPUT

dict_values(['India',37,'Aman'])

items()-
return the

list with all

dictionary
keys with

values.

x=dict(name="Aman",age=37,country="

India")

print(x.items())

OUTPUT-

dict_items([('country','India'),('age',37),('

name','Aman')])

update()-
used to

change the

values of a

key and add
new keys

x=dict(name="Aman",age=37,country="

India")

d1=dict(age=39)

x.update(d1,state="Rajasthan")

print(x)

OUTPUT-

{'country':'India','age':39,'name':'Aman','

state':'Rajasthan'}

fromkeys()
i- is used to

create

dictionary

from keys

keys={'a','e','i','o','u'}

value="Vowel"

vowels=dict.fromkeys(keys,value)

print(vowels)

OUTPUT-

{'i':'Vowel','u':'Vowel','e':'Vowel','a':'Vo

wel','o':'Vowel'}

copy()-
returns a
shallow

copy of the

dictionary.

x=dict(name="Aman",age=37,country="

India")

y=x.copy()

print(y)

OUTPUT-

>{'country':'India','age':37,'name':'Aman'

}

Dictionary

Membershi

p Test

in

not in

#Membership Test for Dictionary

Keys

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

print(1 in squares)

print(2 not in squares)
print(49 in squares)

Output -

True
True

False

Iterating

Through a

Dictionary

Iterating through a Dictionary

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

for i in squares:
 print(squares[i])

 25 | KVS – Regional Office, JAIPUR | Session 2021-22

Multiple choice questions based on Dictionary

1 Which of the statement(s) is/are correct.

i. Python dictionary is an ordered collection of items.

ii. Python dictionary is a mapping of unique keys to values

iii. Dictionary is mutable.

iv. All of these.

2 Which function is used to return a value for the given key.

i. len() ii. get() iii. keys() iv. None of these

3 Keys of the dictionary must be

i. similar ii. unique iii. can be similar or unique iv. All of these

4 Which of the following will delete key-value pair for key=’red’ form a dictionary D1

i. Delete D1(“red”) ii. del. D1(“red”) iii. del D1[“red”] iv. del D1

5 Which function is used to remove all items form a particular dictionary.

i. clear() ii. pop() iii. delete iv. rem()

6 In dictionary the elements are accessed through

i. key ii. value iii. index iv. None of these

7 Which function will return key-value pairs of the dictionary

i. key() ii. values() iii. items() iv. get()

8 To create a dictionary , key-value pairs are separated by…………….

i. (;) ii. (,) iii. (:) iv. (/)

9 Which of the following statements are not correct:

a. An element in a dictionary is a combination of key-value pair

b. A tuple is a mutable data type

c. We can repeat a key in dictionary

d. clear() function is used to deleted the dictionary.

i. a,b,c ii. b,c,d iii. b,c,a iv. a,b,c,d

10 Like lists, dictionaries are which mean they can be changed.

i. Mutable ii. immutable iii. variable iv. None of these

11 To create an empty dictionary , we use

i. d=[] ii. d =() iii. d = {} iv. d= < >

12 To create dictionary with no items , we use

ii. Dict ii. dict() iii. d = [] iv. None of these

13 What will be the output

>>>d1={‘rohit’:56,”Raina”:99}

>>>print(“Raina” in d1)

i. True ii. False iii. No output iv. Error

 26 | KVS – Regional Office, JAIPUR | Session 2021-22

 27 | KVS – Regional Office, JAIPUR | Session 2021-22

FUNCTIONS
<Place Holder>

Definition :
 <Two Columns from this point onwards>

 28 | KVS – Regional Office, JAIPUR | Session 2021-22

Data File Handling

Text Files
Definition :

 29 | KVS – Regional Office, JAIPUR | Session 2021-22

 30 | KVS – Regional Office, JAIPUR | Session 2021-22

Binary Files

BINARY FILE HANDLING IN
PYTHON

Binary File

* In binary file data is in unreadable
format and to work on a binary file
we have to convert the data into
readable form for read as well as
write operation.

* The binary file stores some objects
which have some structure
associated with them. Like list,
nested list, tuple, dictionary etc.

* These objects are first serialized and
then stored in a binary file.

* If a binary file (existing) open for
reading purpose, when the last
record is reached (EOF reached), it
may raise an EOFError exception, if
not handled properly.

* Thus a binary file should open for
reading purposes either in “try and
except” blocks or using “with
statement”.

Serialization or Pickling:

It is the process of transforming a python
object to a stream of bytes called byte streams.
These byte streams can then be stored in
binary files. Serialization process is also called
pickling.

De-serialization or un-pickling:

It is the inverse of the pickling process
where a byte stream is converted back to a
Python object.

The pickle module implements the algorithm
for serializing and de-sterilizing the python
objects and deals with binary files. The Pickle
Module must be imported to read and write
objects in binary files.

MODES OF BINARY FILES

 b = Open the binary file

 rb = Open binary file in read only mode (file

must be existed)

 wb = Open binary file in write only mode

(new file created, overwritten if existed)

ab = Open binary file in append (write only)

mode. (open if exists otherwise create

new file)

 rb+ = Open binary file in read & write

mode. (file must be existed)

 wb+ = Open binary file in write & read

mode. (new file created, overwritten if

existed)

 ab+ = Open binary file in append (write &

read) mode. (open if exists otherwise

create new file)

 BASIC OPERATIONS IN BINARY FILE

· Creating a new file

· Reading from file

· Writing into file

· Appending the file

· Searing in File

· Deleting data from file

· Creating a copy of file

 OPEN AND CLOSE BINARY FILE

open() function:

 Syntax:

File_handler/File_Object=open(file_nam

e, access mode)

Example:

file_obj= open(“bin_file.dat”,'wb')

 31 | KVS – Regional Office, JAIPUR | Session 2021-22

 This statement opens bin_file.dat binary file in

write mode

 Note : if file mode is not mentioned in open

function then default file mode i.e 'rb' is used,

close() function:

The close() method of a file object flushes any

unwritten information and close the file

object after which no more writing can be done.

Example

file_obj.close()

WRITING INTO FILE- PICKLING

 To write an object into file, the file
should be opened in write mode. The dump()
function of the pickle module is used to write
objects into a file.

 Syntax:

 import pickle

 File_Handler=open(“Bin_file.dat”,’wb’)

 pickle.dump(python_Object_to_be_Writt
en, File_Handler)

 Expamle:

Write Dictionary Object in Binary file

import pickle

stud={}

fwb=open("student.dat","wb")

choice='y'

while choice.lower()=='y':

 rno=int(input("Enter Roll No: "))

 name=input("Enter Name: ")

 marks=float(input("Enter Marks(out of

500): "))

 per=marks/5

 if(per>=33):

 res="Pass"

 else:

 res="Fail"

 stud['rollno']=rno

 stud['name']=name

 stud['Marks']=marks

 stud['percent']=per

 stud['result']=res

 pickle.dump(stud, fwb)

 print("Record Saved in File")

 choice=input("More Record(Y/N)? ")

fwb.close()

 APPENDING RECORD IN BINARY FILE

Binary file must open in append mode (i.e.,

"ab'") to append the records in file. A file

opened in append mode will retain the

previous records and append the new records

written in the file.

Syntax:

import pickle

File_Handler=open(“Bin_file.dat”,’ab’)

pickle.dump(python_Object_to_be_Written,
File_Handler)

Expamle:

Append the Binary file

 32 | KVS – Regional Office, JAIPUR | Session 2021-22

import pickle

stud={}

fwb=open("student.dat","ab")

choice='y'

while choice.lower()=='y':

 rno=int(input("Enter Roll No: "))

 name=input("Enter Name: ")

 marks=float(input("Enter Marks(out of

500): "))

 per=marks/5

 if(per>=33):

 res="Pass"

 else:

 res="Fail"

 stud['rollno']=rno

 stud['name']=name

 stud['Marks']=marks

 stud['percent']=per

 stud['result']=res

 pickle.dump(stud, fwb)

 print("Record Saved in File")

 choice=input("More Record(Y/N)? ")

fwb.close()

 READING FROM BINARY FILE: UN-PICKLING

 While working with a binary file for reading

purposes the runtime exception EOFError

raised when it encountered the EOF position.

This EOFError exception can be handled with

two ways.

1. Use of try and except block

The try and except statements together, can
handle runtime exceptions. In the try block,
i.e., between the try and except keywords,
write the code that can generate an exception
and in the except block, ie., below the except
keyword, write what to do when the
exception (EOF - end of file) has occurred

File_object=(“binary File Name”,’access
mode’)

try:

 …………………………………………….……….

 Write actual code, work in binary file

 ……………………………………………………..

except EOFError:

 ……………………………………………………

 Write Code here that can handle the
error raised in try block.

 …………………………………………………

2. Use of with statement
The with statement is a compact statement
which combines the opening of file,
processing of file along with inbuilt exception
handling and also closes the file
automatically after with block is over.
Explicitly, we need not to mention any
exception for the “with statement”.
Syntax:
with open(“File_Name”,’mode’) as
File_Handler:

Read Records from Binary file
import pickle
stud={}
frb=open("student.dat","rb")
try:
 while True:
 stud=pickle.load(frb)

 33 | KVS – Regional Office, JAIPUR | Session 2021-22

 print(stud)
except EOFError:
 frb.close()

SEARCHING RECORD FROM FILE

import pickle
stud={}
found=0
print("Searching in file student.dat...")
try:
 frb=open("student.dat", "rb")
 while True:
 stud=pickle.load(frb)
 if stud['percent']>51.0:
 print(stud)
 found+=1

except EOFError:

 if found==0:

 print("No Record found with
marks>51")

 else:

 print(found," Record(s)
Searched")

 frb.close()

COPY OF FILE IN ANOTHER FILE

#CREATIN A COPY OF EXISTING FILE

PROGRAM

import pickle

def fileCopy():

 ifile = open("student.dat","rb")

 ofile = open("newfile.dat","wb")

 try:

 while True:

 rec=pickle.load(ifile)

 pickle.dump(rec,ofile)

 except EOFError:

 ifile.close()

 ofile.close()

 print("Copied successfully")

def display1():

 ifile = open("student.dat","rb")

 print("----Records of Student file---")

 try:

 while True:

 rec=pickle.load(ifile)

 print(rec)

 except EOFError:

 ifile.close()

def display2():

 ofile = open("newfile.dat","rb")

 print("----Records of Copy file---")

 try:

 while True:

 rec=pickle.load(ofile)

 print(rec)

 except EOFError:

 ofile.close()

fileCopy()

display1()

display2()

RANDOM ACCESS & UPDATING BINARY FILE

Python provides two functions that help to

manipulate the position of the file pointer and

we can read and write from the desired

position in the file. The Two functions of Python

are: tell() and seek()

(i) The tell() Function

tell() method can be used to get the

current position of File Handle in the file.

This method takes no parameters and

returns an integer value. Initially the file

pointer points to the beginning of the

file(if not opened in append mode).

Syntax

 fileObject.tell()

 34 | KVS – Regional Office, JAIPUR | Session 2021-22

This method returns the current position

of the file read/write pointer within the

file.

(ii) The seek() Fuction

In Python, seek() function is used to

change the position of the File Handle to

a given specific position in the file.

Syntax

 fileObject.seek(offset, mode)

where

offset is a number-of-bytes

mode is a number from 0 or 1 or 2

0: sets the reference point at the beginning of

the file.

1: sets the reference point at the current file

position.

2: sets the reference point at the end of the file.

Example:

f=open(“chapter.dat,’rb’)

f.seek(20)

will place the file pointer at 20th byte from

the beginning of the file (default)

f.seek(20,1) # will place the file pointer at 20th

byte ahead of current file-pointer position

(mode = 1)

f.seek(-20,2)

will place file pointer at 20 bytes behind

(backward direction) from end-of file (mode =

2)

f.seek(-10,1) # will place file pointer at 10 bytes
behind from current file-pointer position
(mode = 1)

Note:

· Backward movement of file-pointer is

not possible from the beginning of the

file (BOF).

· Forward movement of file-pointer is

not possible from the end of file (EOF).

PROGRAM OF tell() and seek()

import pickle

stu={ }

found =false

open binary file in read and write mode

rfile=open(“stu.dat”, “rb+”)

Read from the file

try:

 while True:

 pos=rfile.tell()

 stu=pickle.load(rfile)

 if stu[“marks”] > 81:

 stu[“Marks”] +=2

 rfile.seek(pos)

 pickle.dump(stu, rfile)

 found=True

except EOFError:

 if found=False:

 35 | KVS – Regional Office, JAIPUR | Session 2021-22

 print(“Sorry, No Record found”)

 else:

 Print(“Record(s) updated”)

rfile.close()

DELETE FILE

To delete a file, import the OS module, and run
its os.remove() function:

Remove the file “demofile.txt”

import os

os.remove("demofile.txt")

Check if File exist:

To avoid getting an error, we might want to
check if the file exists before try to delete it:

import os

if os.path.exists("demofile.txt"):

 os.remove("demofile.txt")

else:

 print("The file does not exist")

Delete Folder

To delete an entire folder, use the os.rmdir()
method:

import os

os.rmdir("myfolder")

Note: Only empty folders can be removed.

#PROGRAM

import pickle

import os

def delete_rec():

 f1 = open("student.dat","rb")

 f2 = open("temp.dat","wb")

 rn=int(input("Enter rollno to delete:"))

 try:

 while True:

 d = pickle.load(f1)

 if d["rollno"]!=rn:

 pickle.dump(d,f2)

 except EOFError:

 print("Record Deleted.")

 f1.close()

 f2.close()

 os.remove("student.dat")

 os.rename("temp.dat","student.dat")

delete_rec()

 36 | KVS – Regional Office, JAIPUR | Session 2021-22

CSV Files

CSV (Comma Separated Values)

is a file format for data storage which looks like
a text file. The information is organized with
one record on each line and each field is
separated by comma.

● A Comma Separated Values (CSV) file is a
plain text file that contains the comma-
separated data.

● These files are often used for exchanging
data between different applications.

● CSV files are usually created by
programs that handle huge amounts of
data. They are used to export data from
spreadsheets (ex:- excel file) and
databases (Ex:- Oracle, MySQL). It can be
used to import data into a spreadsheet
or a database.

CSV File Characteristics :

• One line for each record

• Comma separated fields

• Space-characters adjacent to commas
are ignored

• Fields with in-built commas are
separated by double quote characters.

When Use CSV?

• When data has a strict tabular structure

• To transfer large database between
programs

• To import and export data to office
applications.

• To store, manage and modify shopping
cart catalogue

Why Use CSV / Advantages

• CSV is faster to handle

• CSV is easy to generate

• CSV is human readable and easy to edit
manually

• CSV is simple to implement and parse

• CSV is processed by almost all existing
applications

CSV Disadvantages

• No standard way to represent binary data

• There is no distinction between text and
numeric values

• Poor support of special characters and
control characters

• CSVallows to move most basic data only.
Complex configurations cannot be
imported and exported this way.

• Problems with importing CSV into SQL (no
distinction between NULL and quotes)

CSV File Structure

sample.csv file structure

Name, DOB, City

Ram, 12-Jul-2001, Delhi

Mohan, 23-Jan-2005, Delhi

Suraj, 17-Dec-2002,Kolkata

 37 | KVS – Regional Office, JAIPUR | Session 2021-22

Python CSV Module

● CSV Module is available in Python
Standard Library.

● The CSV module contains classes that
are used to read and write tabular form
of data into CSV format.

● To work with CSV Files, programmer
have to import CSV Module.

import csv
Methods of CSV Module :

· writer()
· reader()

Both the methods return an Object of writer
or reader class. Writer Object again have two
methods – writerow() , writerows().

writer() Methods

This function returns a writer object which is
used for converting the data given by the
user into delimited strings on the file object.

writer() Object Methods –

· w_obj . writerow(<Sequence>) :
Write a Single Line

· w_obj . writerows (<Nested
Sequence>) : Write Multiple Lines

Example:-
writerow()
import csv
row=['Nikhil', 'CEO', '2', '9.0']
f=open("myfile.csv", 'w')
w_obj = csv.writer(f)
w_obj.writerow(row)
f.close()

writerows()

import csv
rows = [['Nikhil','CEO','2','9.0'],
 ['Sanchit','CEO','2','9.1']]
f=open("myfile.csv",'w')
w_obj = csv.writer(f)
w_obj.writerows(rows)
f.close()

reader() Methods
This function returns a reader object which
will be used to iterate over lines of a given
CSV file.
r_obj = csv.reader(csvfile_obj)

To access each row, we have to iterate over
this Object.
for i in r_obj:
 print(i)

Example:-
import csv
f=open("myfile.csv",'r')
r_obj = csv.reader(f)
for data in r_obj:
 print(data)
f.close()

If we consider the sample.csv file given above
in the CSV file structure the output of the
above code will be:
OUTPUT

['Name', 'DOB', 'City']
['Ram', '12-Jul-2001', 'Delhi']
['Mohan', '23-Jan-2005', 'Delhi']
['Suraj', '17-Dec-2002', 'Kolkata']

 38 | KVS – Regional Office, JAIPUR | Session 2021-22

